SEM dig-BE EX % kE MLE 7113 POF 79S| MS HID s11

SEM s}e}elel 46l it MLE 7] 7}
POF 7% 9] 4-sulx

INCINEL

2 o

E =Ee He S #7 stell M AAa) A EAlY AEE YEto] Algte dleel 23 7y
off ¥& d-polrt 2t #A2A(Maximum Likelihood Estimation: MLE) 71{-& £ 4] w8
o] 85w Tl A 4 2452 §574(Pencil of Functions) 7|Jid o $& &34z}
F Mg Ae £ =82 29953 9ok MLE 71H-& T3l satelel e 98 =724 7
72 el Atr|yEel Ao, £ =Fedde WF diolels] Holo BAglo] ZFE A)Awy T
gholle} ofollt FASle HA el vlEYA dilo] AL S HFEE HLo| Aste 2 d
olef 2 RE] S H Aol 7} 7 2HAe] gk

Preformance Comparison of MLE Technique with

POF( Pencil of Functions) Method for SEM Parameter Estimation

Doug Nyun Kim!'

ABSTRACT

Parameter estimation techniques are discussed for the complex frequency analysis of an
electromagnetic scatterer. The paper suggests how the Maximum Likelihood estimation technique
can be applied for this purpose. Experiments on hypothetical data sets demonstrate that the
Maximum Likelihood technique is better than the Pencil of Functions technique. Although there
have been several techniques including MLE suggested as tools of the parameter estimation, the
proposed method has strong advantanges under the noise-contaminated sample data environment
because it uses minimal dimension of system matrix tHat stands totally independent of the

length of extracted data set.

1. Introduction

Signal processing techniques have been a
basic tool for estimating the Singularity Exp-
ansion Method (SEM) [1] parameters from the
measured transient response data produced
by an electromagnetic scatterer.

The parametric Auto Regressive Moving
Average (ARMA) modeling for the transient
response leads to a set of homogeneous equa-
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tions for the parameters which are essential
in finding the poles of the scatterer. This
approach is often called the Prony method
[2, 3], which provides an extremely accurate
solution when the data is noise-free. However
under a noisy environment, the Prony method
loses its reliability in the estimation of the
SEM parameters [3]. Efforts have been made
to improve the noise-handling capability of
the Prony method and/or to take a totally
different approach to the estimation technique.
Special attention has been paid to the Pencil
of Functions (POF) {4, 5] method which outp-
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erforms the modified Prony method [6].
The POF method
properties of the family of signals, which are

utilizes the special

produced at each stage by processing the
original data sequence through an appropriate
string of filters. The family of signals taken
from the filter series has special properties
that are utilized for pole extraction.

That is, the ‘linear-dependency’ among the
family of signals incorporates to find the
system parameters without iteration [4].
However, the POF method needs to find a
noise covariance matrix which is dependent
upon the choice of the filter. Unfortunately
the optimum selection of the filter for the
purpose of enhancing the signal-to-noise ratio
is not known. Mackay and McCowen[5] chose
a new form of the filter by which the
performance of the POF method was greatly
improved. It should be noted that new filter
isn ot dependent upon data. The POF method
can be proved to be less sensitive to noise
than in the second Prony method [2]. Aside
from the estimation techniques discussed
above, the Maximum Likelihood (ML}
estimation technique has been investigated
by many researchers [7, 8, 9, 10, 11, 12],
since it provides a unigque solution that is
unbiased and consistent as the number of
trials grows without bounds.

In fact, the ML estimator will provide the
minimum attainable variance estimate which
is well known as the Cramer-Rao (C-R) lower
bound. It has been pointed out [13] that the
likelihood function can be maximized by the
ML solution explicitly neither in closed form
nor even in recursive form. Hence many
iterative methods have been suggested as
approaching tools for the ML solution. The
proposed ML technique distinguishes itself
from other Maximum Likelihood approaches
simply because it firstly suggests and derives
the recursive formula that utilizes only K x

K matrix inversion, where K is the order of
system to be identified. Traditional ML appr-
oaches require (N-K) x (N-K) matrix inversion,
where N is length of sampled data that is
normally contaminated by noise. What it
means is that traditional ML method may be
constrained its application to smaller sampled
data set. On the contrary the proposed
scheme takes the sample data length with
no limit and it is quite indepenedent of data
length.

In section 2 the ML algorithm is described
in a unified framework, and in section 3
the ML approach is compared with the POF
method by simulation. It is the objective of
this paper to demonstrate that the ML
estimation technique is better than the
modified POF method.

2. Maximum Likelihood Estimation

Consider the measured data fi for i

=0,1,2 ..... .
L-1:
fi = hl + e (1)

Where hi is an impulse response of the K-th
order system and e; is the zero mean white
Gaussian noise process at the i-th sampling
instant.

One wishes to estimate the system poles
Ip;l. Let r; be the residue associated with the
j-th pole p;, then at the i-th sampling instant,

k .
hlz erj(pj)l (2)

j:

In matrix form, equation (1) becomes

f=Cplr+t+e 3)



Where
Cp) = 1 1 1 1 -
P 2 P3 " ' ' Pk
(4a)
[-1 L-1 L1
p1 pz R S
f=1[f f1...fL1 It (4b)
p= [pl p2...pk NI, {4c)
r={r1ir2...rk It (4d)
e= [e0el ... el-1 |t (4e)
Where "t" denotes the matrix transpose
operation.

The matrix C(p) is of the form of the
Vandermonde matrix of rank k. It is well
known that minimizing the norm |le||® is
equivalent to maximizing the likelihood

function [14].

The optimum parameter estimates for{r, p}
[lell* with
respect to plor C(p)) associated with the

are obtained by minimizing
relationship

r=( C (p) C(p) I’ C(p)' 1. (5)
In other words, the estimation of C(p) is

equivalent to solving the nonlinear least
squares problem in the minimum norm

sense,

min || e |[% (6a)
where

e=[1-C(p) (C(p)'C(p) }'C(p) ] f, (6b)

and I is the identity matrix. Solving min
lle||? as in the form of (B) directly is not
feasible. Efforts have been made recently to
replace equation (6) with more tractable
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forms [9, 10].

The technique introduced in [10] replaces
the matrix C(p) with matrix consisting of
the characteristic polynomial coefficients and
employs an iterative method to solve the
nonlinear equations.

However, the dimensionality of the matrix
involved in each iteration is L-K which may
be quite large in some applications. The
system poles satisfy the equation

P Bp) =0 for k = K, K+1, ... , L-1
and j = 1, 2, .., K, (7)

K
where B(z)= 2 z ' istermed the characteristic
-0

polynomial whose roots are the system poles.
Define the Lxl. lower triangular matrix U

U= —bn )
by by
b” O
bk bki -+ by (8)
L T *
L -
o bgi - - - b LxL.

Note that U is nonsingular and its inverse
matrix V = U' is always existing. Matrix V
is shown to be also lower triangular matrix

and can be denoted by

V= —wvo -
\'Z] va O
9
- vi viovh —d
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Let Ud and Vr be the matrices consisting of
last L-K rows of U and last L-K columns of
V, respectively, and Uu and V, be the
matrices consisting of first K rows of U and
first K columns of V, respectively. Then the
[xL matrices, U and V, can be partitioned
as follows:

U= [Uu ] 1K

Us IL-K (10)
L
V=[V ; Vrl JL. (11)
K L-K
Since UV =1,
Us Vi = Ournk. 12)

Equation (7) can be written in matrix form ,

Ui C®) = Onknk 13
And

rank { C(p) } = rank {V} = K,

rank { Us |} = LK. (14)

Note that the column space of Ug s
orthogonal to both the column space of C(p)
and that of V.
columns of the matrix C(p) is the column

The space spanned by the

space of V.
Thus there exists a nonsingular KxK matrix
T with complex elements such that

Cp=Vi T (15)

By substituting equation (15) into equation
(6b), one obtains

e = [V, (V'V} Vi f (16)

Let the orthogonal projector P(V)) onto V, be
Vi' (Vi'Vi)! V.. Then,

Il ell>=1f{1P V) an

and the ML estimator now is to find the optimum
b=[ bo by ... bk] by solving min || e |}* with
the given data vector f.

An iterative method can be used. Using
the estimated b obtained from the previous
iteration, the matrix V is formed with the
elements which can be recursively calculated
by the relationship

vo = /by
=2byv,. 1=ijx<K,

v

K
gbiv“" K +1<j. (18)

Only KxK matrix inversion is involved in
calculating P(V)) at each iteration. Thus less
numerical difficulties are encountered. The
iterative procedure will continue until the
convergence criterion is satisfled. System
poles are found by calculating the roots of
the characteristic polynomial estimate, and
associated system residues are obtained
by equation (5). This is called the Iterative
Preprocessing  Algorithm (IPA) and is
documented in (11, 12].

3. Simulation Results

The same example was chosen as in [5].
The poles and residues were:

poles residues
sz = -.1 +)1.5 n:=.41%j2
18 =135
ss6 = -.3 t jl.0 Tse = 2. 7 jl.
System order N = 6, Sampling Time T=.5
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Three different levels of noise were used.
i.e.,p = 0.001, 0.01, 0.1. For each noise level,
18 independent trials were performed. For
each trial different noisy data is generated
and the result of estimation is compared
with true values of system poles and the

distribution of estimation errors are shaded
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(Fig. 1) The Performance Comparison
Data Length N=50
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(Fig. 2) The Performance Comparison
Data Length N=100
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in falling boundary marked with upper and
lower percentile. In most cases the number of
iterations required for convergence was less
than 5. (Fig. 1) compares the ML estimation
method to the POF technique when the data
length=50. When r =.001, 89% of the test results
shows that the ML method can estimate
only within 10" order of error while the
POF technique can estimate only within 10™
order. The estimation capabilities of the two
techniques become distinct as the noise
increases. With 10" noise level the ML
method still estimates the 39% of the whole
tests within 10-2 order of error, but the
POF method cannot. For another comparison
the data length was extended to 100. It is
found that both estimation techniques have
improved capabilities of estimation especially
for the low noise level (10 (Fig. 2). Note
that even under the heavy noise (» = .1),
the ML technique is capable of estimating
the poles of the given example within 107
order of error for about 90" of tests.

4. Conclusion

Two SEM parameter estimation techniques
are compared. These two techniques: the
Pencil of Functions method and the Maximum
Likelihood method are applied to the same
hypothetical data sets and the test results
show that the ML approach has the better
performance in handling noisy data. Unlike
other Maximum Likelihood method, which
requires (N-K) x (N-K) matrix inversion [7,
8, 9, 10}, the proposed MLE technique uses
minimal number of system matrix dimension
and requires only K x K matrix inversion
which in return, results in strong and robust

findings of system parameters
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