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Connectivity of X-Hypercubes and Its Applications
Kyung Hee KWON' and Si-Qing Zheng"

ABSTRACT

The hypercube-like interconnection network, X-hypercubes, has the same number of nodes
and edges as conventional hypercubes. By slightly changing the interconnecton way between
nodes, however, X-hypercubes reduces the diameter by almost half. Thus the communication
delay in X-hypercubes can be expected to be much lower than that in hypercubes.

This paper gives a new definition of X-hypercubes establishing clear-cut condition of connec-
tion between two nodes. As application examples of the new definition, this paper presents sim
ple embeddings of hypercubes in X-hypercubes and vice versa. This means that any programs
written for hypercubes can be transported onto X-hypercubes and vice versa with minimal over-
head. This paper also present bitonic merge sort for X-hypercubes by simulating that for
hypercubes.

particular, many of other networks can be
embedded in 1it.

1. Introduction

Many multi-processor computers have been
proposed over the last decade. Among these,
the hypercube machine has been recognized
as one of the most important parallel comput-
ers due to its high-bandwidth, logarithmic di-

ameter and regular topological properties. In
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Recently a slightly modified hypercube net-
work called X-hypercubes was introduced [4].
X~hypercubes have tle same structural com-
plexity as conventional hypercubes, ie. a n-
dimensional X-hypercubes has the same num-
ber of nodes, and the same number of links
per nodes as hypercubes, but the diameter of
a X-hypercubes is about the half of the
paramter of hypercubes of the same dimen-



sion. This implies that X-hvypercubes have the
advantage over hypercube when data commu-
nication is of major concern, especially under
the condition of improving the system perfor-
mances without or with a little increase in
the system costs. Indeed, as shown in [7],
the data broadcasting and census operations
on a X-Hwvpercube takes about half of data
communication steps of the same operations
performed on a hypercube.

It 1s well known that for multi-processor
systems, the data communication cost domi-
nates the computation cost. Therefore, it is
worthwhile to make comparative studies on
hypercubes and X-hypercubes, and explore the
advantages provided by X-hypercubes.

When a hypercube machine of dimension is
abstracted as a graph, processors are treated
as vertices and data links are treated as
edges, where each vertex is given a unique
label and the connectivity between vertices
can be easily determined by inspecting the la-
bels associated with vertices. In contrast, X-
hypercubes are less regular. In fact, the origi-
nal definition of X-hypercubes appeared in
[4] is not so formal. In [7], a formal defini-
tion of X-hypercubes is introduced. However,
this definition does not provide explicit condi-
tions for the connectivity of vertices. The
analysis of the algorithmic aspects and topo-
logical properties of X-hypercubes in [7] are
based on a notion array arrangement of ver-
tices, which 1s used to derive the connections
addition to the
finding the

between  vertices. In

mnconvinience, connections by
using the array arrangement involves comput-
ing exponents.

Compared to hypercubes, one of major dis-

advantages of X-hypercubes is the fact that it
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is hard to use due to its more complicated
connectivity than that in hypercubes. In this
paper, we give an alternative definition for X
—hypercubes. We show that using this defini-
tion, the connectivity between any two verti-
ces In X-hypercubes can be easily determined
by scanning the labels of the vertices. We
also show how to use this definition to imple-
ment simulations between hypercubes and X-

hypercubes.
2. Definitions of X-hypercubes

A n-dimensional X-hypercubes, which is de-
noted as @7, is a graph of 2" vertices. To
simplify our presentation, we define the n-di-
mensional companion X-hypercubes, denoted
as QF, in parallel with Q7. Each node in or
QS is labeled by a distinct n-bit binary num-
ber in B, by which we denote the set of all
possible n-bit binary numbers bb,.,---b,. We
use # to denote the concatenation operation
on two binary numbers, ie., for two binary
numbers b, and b;, b, #b; i1s the binary num-
ber of | b, | + | b,| bits obtained by concat-
enating them, where |b{ is the number of
bits in b. We use b# B, to denote the set
of binary numbers obtained by concatenating
the binary number b with all numbers in B,
ie. b# B,={b' | b¥’EB,}. The formal recur-
sive definition of Q7 (and Q¢ ) given in [7]

is as follows:

Definition 1:

Qf = (vl ET). where
vi =10, 1}: and
ET = (011,
Qf = (VS EF) is identical 1o Q]

For n> 1 and n is odd,
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QI = (VI El). where

V1= Ba and
ET = {[0¢ 5,00 v,) i, v, € Ba.y and [vi, v;) € EL)
u{l1®vi 1% p,] i, v € B and (v vl € EEY)

U{(0¢vi,1#0;) Lt v, € Bay and v0 = vy

QF = (VS EfF ), where
VE = Ba: and
ES = {{0¢y,.0¢0,) ! vi. v, € Bay and [v.. v,) € ES)
vill#vi.18v,] ‘v, v, € Boy and [ 1., ;] € En)

vi{[orv. 12u,] v, , € Bay and v, = vt

For n > | and n is even,
QT = (VI El), where

VI= Ba and
El = {(0fu;,060,] 11 . v, € B,y and [ 1. v)) € BN
vill2u,.12,) te, 0, € By and [ v 1) € ES )
u{[00% v, 107 ¢,] {012, 1L2 ) L0y, v, € Ba
and v, = 1),

Qs = (VS ES), shere

VS = Ba. and
ES = t(0#¢, 0001 (150,18 0,) 1. v, € Bay  and
tvi. vl € EX )
U {{00% v, 118 1:)) [018 p, 108 1] {0, v, € Ba
and Uty = l’r'

In figure 1 and figure 2, we show several
hypercubes and X-hypercubes of low dimen-
sions. For reasons that will soon be apparent,
we define a finite state automata A,= (S, B,
T, g, F), where S={(T, T, C, C,} is the set
of states in A,; B={0, 1} is the input
alphabet; g, is the initial state (qy=T if n is
even, and T; if n is odd); T is the transition
function Sx B, and F=S is the set of final
states. The transition function T is defined in
the transition diagram shown in figure 3.
One additional constraint on A, i1s that the bi-
nary strings that can be accepted by A, have
length no longer than n. We define prefix(n,
v;d) as the substring of v obtained by delet-
ing the rightmost d bits of v. We say that
prefix(n, v,d) is of type T, (resp. T, C. and

Go) if by left-to-right scanning prefix(n,v;d)
the state 7, (resp. Ty, C. and &) of A, is
reached after n-d state transitions. For two
distinct binary strings u=u,u.----u; and v=uy,
Unreoovy, we define d(n,u,v) as the maximum
1 such that u,=#v.

Definition 2:

X-hypercube of dimension n i1s a graph with 2
" vertices, each is labeled by a distinct n-bit
binary number, and any two vertices u=u,u.,
~vw and v=wv,p,----v, are connected by an
edge if and only if one of the following two
conditions holds:

(1) prefix(n,u,d(nu,v)) is of type C,

Ugn utyUdnu)~1 = VUdinw v Vdinwa)—1 and u,
=y for i#d(nuv), and i+d(n,uv)a—
13

(2) prefix(n,u,d(nu,v)) is not of type C, u,

= for+d(n,u,v).

To venify the equivalence of definition 1
and definition 2, let us look closely at the
structure of X-hypercubes. For @, we called
the subgraph induced by a vertex subset {b.b.
1ol | baba—1obge s =CuCao1* a1}, Where ¢,
+cq+1 18 a constant and 1 <d<n, as a d-di-
Clearly, QT is
recursively defined by its subcubes. We say
that a d-dimensional subcube of @ T induced
by a vertex subset {bb.—---by | buby—1 - -bys) = s
Co1ovca-1} 18 of type T.C.) if by looking at
the d least significant bits of the labels, the

mensional subcube of QT .

connections of vertices satisfy the definition
of @ 7(Q §) and d is an even number. Simi-
larly, we define types T, and C, of d~dimen-
sional subcubes of QT. Note that the only dif-
ference between T, and T.(C, and C.) is that
d 1s an odd number for T,(C,). Directly fol

lowing definition 1, we know that two verti-



ces u and v of @ are connected by an edge
if and only if they are connected by an edge
in the subcube of the smallest dimension that
contains both of u and v Thus, the problem
of determining whether or not u and v are
connected 1s reduced to determining whether
or not they are connected in the smallest
subcube containing them.

It i1s easy to see that d(n,ur) indicate the
dimension of the smallest subcube of @[ that
contains z and v, and the type of prefix(n,v,
d(n,u,v)) tells the type of such a subcube. By

definition 1, we conclude that

Theorem 1:
Definition 1 and definition 2 for X-

hypercubes are equivalent,

It should be pointed out that the type of

prefix(n,u;d) can be effectively computed
using A,. To determine the type of prefix(n,
u,d), we need to scan u=u.u, ---u, from left
to right and make n-d state transitions in A,
. The automata A,, together with the notion
prefix(n,v;d), 1s not only useful for determin-
ing whether or not two vertices in @ are
connected by an edge, it can also be used ef-
ficiently solving the following decision prob-

lems:

(i) Given a vertex u in QT , determine
all its adjacent vertices in Q7;

(ii) Given a vertex u= uu,y--u in QL ,
determine the vertex v= v,v,-,---v; that
is connected to u such that u, = for
n=1>d and us* vy, and

(iii) Given a vertex u in @7 , determine
the types of all subcubes of @ that

contain u.
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All these operations are useful for investi-
gating the algorithmic aspects and
combinatoric structures of X-Hypercube ma-
chines. For example, we may define an edge
connecting two vertices u = u,u,-,'-'u; and v
= v on in @ such that u,= v for n>i
>d uy as a d-dimensional edge of QL. The op-
eration (i) can be used to find all d-dimen-
sional edges of @7 . The above listed opera-
tions are very useful for divide-and-conquer
paradigm for designing efficient parallel algo-
rithms on X-Hypercube machines, as indicat-
ed in the

conventiional hypercube machines.

previous investigations on

3. Application Examples

In this section, we show how the new defi-
nition can be used to derive results in the
computational aspects of X-hypercubes and
conventional hypercubes. Firstly, let us consid-
er embeddings between hypercubes and X-
hypercubes.

Let G and H be two simple undirected
graphs. An embedding of G in H is a one-to-
one mapping of the vertices of G into the
vertices of H, together with a specification of
paths in H connecting the images of the end-
points of each edge in G. The dilation of the
embedding is the maximum length of these
paths in H and the congestion of the embed-
ding is the maximum number of edges of G
whose corresponding mapped paths in H in-
clude a single edge in H. Graph embeddings
can be used for a model simulating one com-
puter architecture by another. The parame-
ters dilation and congestion are used to mea-
sure the efficiencies of such simulations. The

following algorithm embeds Q, into Q7.
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procedure EMBEDI( Q., Q1)
for every edge (x, y] do
d = d(n,x,y):
if the type of prefix(n x.d) is (. then
case { xaxa-1, Yya1) of
{00, 10} : 24741 = OL:
(01, 11} : za2q5 = 10:
endcase
let 2, = x; for i »#d and i #d-].
asociate [x,2z] and [2.y] in QI with [x.y) in Qa:
else
associate [x.y] in Q) with [x.y} in @
endi f
endfor
end EMBED]S

For embedding Q7 into a Q.. wegive the following algoriths:

procedure EMBEDX Q7. Q)
for every edge [x. y} do
d = d(n,x,y):
if the type of prefixin x:d) is (’, then
case { x4¥a 1, Yoyg 1} of
{01, 10} = zgzq : = 00:
{00, 11} @ zazy: = 10:
endcase
let z, =x, for i =d and | =d-1

asociate [x.z) and [2.y] in Q. with [x.y] in QF:
else
associate [x.y] in @, sith [x.y] in @I
endif
endfor
end EMBEDZ

Theorem 2 : Q. can be embedded into @
with dilation 2 and congestion 2 and Q) can
be embedded into @, with dilation 2 and con-

gestion 2.

Proof:

Since the proof for two parts of the theorem
are similar, we only give the proof for the
first part, i.e. @, can be embedded into@T
with dilation 2 and congestion 2. Obviously,

the embedding constructed by algorithm
EMBED1 is of dilation 2. By algorithm

EMBEDI, we know that any d~dimensional
edge in @. is either mapped to the edge in
Q7T connecting the vertices with the same la-
bels, or mapped to two d-dimensional edges
in a d-dimensional subcube of type C, of QT
that contains x and y. Thus, we only need to
consider mappings of d-dimensional edges [z,
¥] to d-dimensional edges. The edge [«v] in

T where wwe =01, vw,1=10, and u=v,

for i#=d and i#d—1, is used exactly twice
in the embedding, and the edge [u, v] in Q]
, where u,=0, w=1, and u,=v for i#d, is
also used exactly twice in the embedding.
Therefore, the congestion of the embedding
constructed by algorithm EMBEDI is 2.

By theorem 2, we know that any algorithm
on hypercube machines can be implemented
on X~Hypercube machines with the same per-
formance. For example, sorting 2" numbers
on a n-dimensional hypercube machine re-
quires O(»*) time. This can also be achieved
on a n-dimensional X-hypercube by simula-
tion shown below. The symbol < denotes such
a communication of a data item from an
adjacent processor’s local memory into the

active local memory.

procedure BITONIC MERGE SORT
for i=0 to n-1 do
for j=i downto 0 do
d= 2%
for all Py vhere 0 Sk < 2"-1 do
if k nod 2d <d then

if prefix(n, k:j+1) is of type C. then
q=2"1:
tieq & Qiodt
Lk & tieg:

else

ty &= Qx.d:

endif ) ]

if k mod 272 <2 then
br=max( ty, ax):
ax=ain( tx, ax):

else
bizmin( tk, ax);
ar=max( te, ak)i

endif

if k mod 2d 2d then
if prefix(n, k. j+1) is of type C. then

a=2"7
tk-qg *= bi-ai
Qx & lk-q:

else
ax &= bx-a

endif

endif
endfor
endfor
endfor

end BITONIC MERGE SORT



4. Concluding Remarks

We presented an alternative formal defini-
tion for X-hypercubes. As the definition of
conventional hypercubes, this concise defini-
tion explicitly provide the conditions of con-
nectivity of vertices. As examples, we showed
how to derive simple proofs of some known

results on embeddings between hypercubes

11770
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a) 3-dimensional hypercube
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(Fig. 1) 3-dimensional hypercube, Q3 and Q5
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and X —hypercubes. We also showed how to
use the connectivity conditions given in the
definition to express the bitonic merge sort
algorithm for X-hypercubes. We believe that
this new definition will be very useful for
further research in the parallel computation

on X-Hypercube interconnection networks

and multi-processor computer systems.
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c) Qf
(Fig. 2) 4-dimensional hypercube, @ and @1

v

(Fig. 3) Automata A .
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