M BHOM XML =2 AEE ZO| HEIE T ZEXL 2023 J7IY 33

DOI: 10.3745/KIPSTD.2010.17D.5.353

o oF A
2 o
ALl dlo|Elulo] A9} ] XML AEqo] it Aol AAF 2z]g o] AREako] ajghe] g}, o] =FolAE XML 225 Ao]
2 1"_’-‘-’—‘1 ol BAES wa gd 5 de Zes dolBd 7|WE Akt Aty #HolEW 7He W FEA A Aol s 2
7t 48 HAasste] A& Ao Ha)F MFect A A} Aoky do|Ba 7He AsHor Ao Alsn vine] AEFE H
48 & 5 AM,

IINE: XML =2t AEQ, 29 A2, yo|S8, FH &4

Efficient Labeling Scheme for Query Processing over
XML Fragment Stream in Wireless Computing

Hye-Kyeong Ko'

ABSTRACT

Unlike the traditional databases, queries on XML streams are restricted to a real time processing and memory usage. In this paper, a
robust labeling scheme is proposed, which quickly identifies structural relationship between XML fragments. The proposed labeling scheme
provides an effective query processing by removing many redundant operations and minimizing the number of fragments being processed.
In experimental results, the proposed labeling scheme efficiently processes query processing and optimizes memory usage.

Keywords: XML Fragment Stream, Query Processing, Labeling, Wireless Computing

continuous XML fragment streams. The server disseminates
XML data to multiple clients concurrently through a data
stream, while each client is completely responsible for

1. Introduction

XML [11] is emerging as a defacto standard for
information representation and data exchange over the
web, XML data, being inherently hierarchical and
semi-structured, poses a heavy overhead on runtime
factors, such as memory requirement and processing
efficiency [2]. With the increase of mobile devices and
with the request for information on the move, a server
disseminates data over low-bandwidth and error-prone
environments [2]. As the intermittent connectivity of
mobile clients makes infeasible to carry large dataset,
fragments may be a better choice for data transmit. This
paper focuses on an efficient query processing over

T4 g g dsael|ad it ol
e 010d 29 1Y
YArghe 2010 4% 59

processing the stream.
(Fig. 1) shows an example of disseminationon of XML

~
< broadcast

A

l\ll'.hl\.h-|.' ~ ’ I...

broadeast

A

(Fig. 1) Dissemination of XML fragments



354 HEXZIEES

=EX D M17-DP M5=(2010.10)

fragments. If queries are processed on large XML
document, XML fragment should demand less memory
and processing power [2], [4]. Recently, many research
works focus on answering queries on streamed XML data
which deal with fragmented XML data based on
Hole-Filler model [4], such as XFrag [2], XFPro [6].

However, Hole-Filler model has two main limitations:

The space overhead for the hole/filler IDs with related
XML tag in XML fragment could be very large.

Given two XML fragments, it can not directly identify
the ancestor-descendant (A-D) relationships between
fragments.

The principal problem with Hole-Filler is the limited
effectiveness in reconstructing portions of the original
XML document in the limited memory and evaluating
queries against XML fragment. Due to these limitations,
the required memory for query processing over streamed
XML fragments would be increased. In order to solve
this problem, the location information of fragments would
be known. For this purpose, the labels of fragments can
be utilized, and the relationship of fragments can thus be
obtained through these labels.

A number of labeling schemes have been designed to
label nodes, namely region-based labeling [16] and prefix
labeling scheme [15]. However, when using the region-based
labeling scheme for streamed XML fragment model,
identifying the parent-child relationship of fragments is
difficult, because only the region of the node label is
represented. In the prefix labeling scheme [15], the nodes
inherit their parent's labels as the prefix to their own
labels. If XML tree is deep, the label size will be
increased with depth. Thus, query processing cost will be
high in the two labeling schemes over streamed XML
fragment. Consequently, a new labeling scheme is
strongly required for identifying portions of the original
XML document against XML fragment.

In this paper, a novel labeling scheme for simply
identifying structural relationships between XML fragments
by borrowing Hole-Filler model. The contributions of this
paper include the following:

A robust labeling scheme is proposed, which can
quickly identify structural relationships between XML
fragments.

The experimental results demonstrate the effectiveness
of the proposed scheme.

The paper is organized as follows. Section 2 presents
the related work of XML stream query processing.
Section 3 presents the proposed labeling scheme for XML
shows the conducted

fragment stream. Section 4

experimental results and Section 5 provides our

conclusion.

2. Related Work

Several recent works have focused on frameworks for
continuous processing of data streams [3], [5], [8], [9],
[17], [18]. There is, however, no work done in stream
query processing of fragmented XML data. Hole-Filler
model was first proposed in [7]. However, it is used in
the context of pull-based content navigation over
mediated views of XML data from disparate data sources.
Recently, many research works address querv processing
on streamed XML fragments based on Hole-Filler model,
such as XFrag [2], XFPro [6). In XFrag [2], XML
fragments are processed when they arrive and only these
fragments that may effect on the query results are kept
in the association table. However, XFrag pipeline is still space
consuming in maintaining the links in the association
tables and time cost in scheduling the operations for each
fragment [6]. Moreover, the “redundant” operations are
caused with dependence between adjacent operators in
XFrag. XFPro [6] presents a framework and a set of
techniques for processing XPath queries over streamed
XML fragments and techniques for enabling the
transformation from XPath expression to optimized query
plan. In XFPro, the query processing pipeline is improved
over XFrag because it just considers subroot nodes.
However, many intermediate fillers occur for queries
including “*” or “//".

3. Efficient Labeling Scheme on Hole Filler Model

3.1 Preliminary of Hole-Filler Model

XML document is pruned in to many fragments in
Hole-Filler model [7]. In order to summarize the structure
of XML fragments, tag structure is used to support
structural and fragment information. A tag structure is
itself structurally a valid XML fragment that fulfills to
XML schema or DTD, where a tag corresponds to an
XML element and is qualified by a unique id, and the
element tag name (7).

(Fig. 2) shows an XML document, which acts as a
running example of our work. Given an XML document
tree Ty = (Vg E4 24 roots, Did), a filler Ty = (V}, E, X
5 rool, fid, tsid) is a subtree of XML document
associating an fid and a tsid, where V;, E;, 2; is the
subset of node set Vi, edge set E; and element type set



S THOAM XML =2t AEF B XM2AE 2T =EX2 o028 7Y 355

<book>

<title> XML </title>

<authors>
<author> ]. Lee </author>
<author> H. Park </author>

</authors>

<year> 2007 </vear>

<section>
<head> XML DTD </head>
<subsection> ++ </subsection>

</section>

</book>

(Fig. 2) Example of XML document

2.4 respectively, and root; (€ V)) if the root element of
the subtree; a hole H is an empty node, (€ V) assigned
with a unique hid and a tsid, into which a filler with the
same fid could be positioned to complete the tree [7].

(Fig. 3) depicts the tag structure. Given an XML
document tree, we can fragment it by recursively inserting
a hole at every point where a subtree is pruned, i.e., filler is
generated, and associating it with an ID (the fid is the filler
fragment). Note that the filler can in turn have holes in it,
which will be filled by other fillers.

Also, the original XML document reconstruct by replacing
holes with the corresponding fillers at the destination in the
source. Attribute fsid (i.e., tag structure id) represents the
ID of the fragment’'s root element in XML document DTD.

<stream: structure>
<tag name= "book” id= "1" Filler= "true">
<tag name= "title" id= "2"/>
<tag name= "authors” id= "3" Filler= "true">
<tag name= "author” id= "4"/>
</tag>
<tag name= "vear" id= "5"/>
<tag name= "section” id= "6" Filler= "true">
<tag name= "head” id= "7"/>
<tag name= "subsection” id= "8" Filler= "true">
<tag name= "head” id= "9"/>
<tag name= "title” id= "10"/>
</tag>
<tag name= "figure” id= "11" Filler= "true”>
<tag name= "title" id= "12"/>
</tag>
</tag>
<ftag>
</stream: structure>

(Fig. 3) Tag structure of Hole-Filler Model

3.2 A Novel Labeling Scheme
A robust labeling scheme supports the speedy inference
of structure information of XML fragment such as

3111 3112 3123 3234 323532463247 3358 3359

(Fig. 4) Labeled XML document

parent-child relationship “/" and ancestor descendant
relationship “//" between fragments. The proposed labeling
scheme identifies structural relationships faster even if
XML tree is deep; moreover, it has smaller label size
than the prefix labeling scheme [15].

(1) Labeling construction

The labels of all nodes are constructed by the four
significant components (CI, 2, C3 and ), which are
unique,

(a) CI : It represents the level of node in XML document.

(b) C2 : It represents the seed number of node which

branches from root node. The seed number can apply
from level 2 of leaf node that is increase I,
respectively. The seed number of first leaf node is
always 1.

(c) G3: The component that is inherited from parent’s

label, which is (4 of parent node.

(d) ¢4 : It represents the relative location among sibling

nodes.

A unique label is created by four components, which
are concatenated by a “delimiter ()". (Fig. 4) is the
labeled XML tree by applying the definitions.

Definition 1. (Label for root node r) The root node
does not have a level, a parent node and a sibling node,
the value of root is nil.

Definition 2. (Label for internal node x) CI is
represented by the level of corresponding node. €2 is
created by seed number which branches from root node.
(3 is created by inheriting (4 (the parent’s component).
Finally, (4 represents the order of sibling nodes. (x is a
current node)

Lix)=Cly . C2 . C3 . C4y

(2) Speeding up structural relationships

The proposed labeling scheme provides an effective
query processing by removing many redundant operations
and minimizing the number of fragments being processed.



36 HEHM2AFHZ =X D M17-DA HS=(2010.10)

Seed labeling can quickly determine the ancestor-descendant
relationship which only compares CZ2.
(Parent-childrelationship) If node x is a parent node
of node y, the two labels satisfy the following.
(a) CI of parent node x is equal to CI + I of child
node y.
(b) ¢4 of parent node x is equal to C3 of child node y.
(Ancestor-descendant relationship) If node x is an
ancestor node of node y, the two labels satisfy the

following.
(a) CI + 1 of descendant node y = CI of ancestor
node x
(b) (2 of ancestor node x is equal to (2 of descendant
node y

(Sibling relationship) If node x is a preceding sibling
node of node y, the two labels satisfy the following.

(a) CI of right node x is equal to CI of left node v

(b) C3 of right node x is equal to C3 of left node v

(c) 4 of right node x is equal to Cf +I of left node v

3.3 Fragment Representation

In Hole-Filler model [4], the fillers associate with holes
by matching fids with hids. Given two XML fragments, it
can not directly identify the ancestor-descendant (A-D)
relationships between fragments. Due to these limitations,
the required memory for query processing over streamed
XML fragments would be increased. In order to solve
this problem, the location information of fragments would
be known. For this purpose, we extend the fid with the
proposed labeling scheme, where the location of an
element is represented as labeling (CI. (2. C3. (). CI is
the nesting depth of the fragment's root element in the
original XML document.

(Fig. 5) represents four fragments of XML document in
(Fig. 2) after coding fid and hid with the proposed
labeling scheme. Here, root's filler (ie, the root of
fragment document) is nil. Other filler IDs can be
generated by pre-order traversing XML document tree on
the server side. The fillers is connected with holes by
matching filler IDs with hole IDs. Fragment 4's fid
corresponds to Fragment 3's hid. Fragment 4 is a subtree
of Fragment 3 when XML document is reconstructed. For
example, “subsection” and “head” are in the same filler
and the level of this filler equals to the level of
“subsection” in the original document in (Fig. 5).

Using the proposed labeling scheme, the fragment not
only maintains the relationship information between
correlated fragments, but also simply identifies descendant
fragments according to seed number (C2). Thus, the

Fragment 1: Fragment 2:
<stream: filler 1d="null” tsid="1"> <stream: filler id="12.1.2" tsid="3">
<book name="core!"> <suthors>
<title> XML </title> <author> J. Lee </author>
<stream: hole d="12.1 2" tsid="3"/> </authors>
<year> 2007 <fyear> <fstream: filler>
<stream: hole id="1 4.1 4" tsid="6"/>
</book>
</stream: filler>
Fragment 3: Fragment 4:
<gtream: filler 1d="1.4.1 4" tsid="6"> <stream: filler 1d="24.47" tsid="2">
<seclion> <subsection>
<head> XML DTD </head> <head> ... <fhead>
<stream: hole 1d="2447" tsid="8"/> <title> ... </litle>
</gection> </subsection>

</stream: filler> </stream: filler>

(Fig. 5) Example of XML fragments

proposed labeling scheme provides efficient processing of
the descendant axis (//) and axis (/) of XPath expression.
Given the label, parent child relationship between nodes
obtains by matching their labels. For example, suppose
that f; with label (fiCI. f;C2. fiC3. i) and f> with label
£Cl 2. £C3. fC4) are fragments. The f is a
descendant of f; iff iCI > £oCI and fiC2 = -:C2. The f is
a child of f; iff 1CI = £C1 1 and fitd = fC3. Thus,
Fragment 4 with label (244.2) is a child of Fragment 1
with label (1.4.14) in (Fig. 5).

{Table 1) Query type

XPath Expression

Q1 | doc{"book.xml")/book/section/subsection/title

Q2 | doc("book.xml”)/book/section[/figure/title]/section/title

Q3 | doct"beok.xml")/book/section[difficulty = "default”)/title
Q4 | doct"book.xml")/book/section//title

4. Performance Evaluation

In our experimentation, it is assumed that XML document
has been fragmented already. We focus on the query
processing time and memory usage on streamed XML
fragments on the client side. We have implemented XFrag
[2], XFPro [6] and proposed scheme in Java on Windows XP
Professional. We present the results of performance
evaluation over different queries and document sizes. All
experiments are conducted on a PC with 26GHz CPU and
2GB memory. The experiments are conducted on datasets
generated by the Xmlgen of XMark benchmark [10]. We
have used the following two queries on the generated
“book” XML document and compared the results with
XFrag [2], XFPro [6]. Table 1 shows the XPath expression
used in the experiments. The memory usage was measured
using the EclipseProfiler plugin [14] for the Eclipse IDE. The



2M ZAMM XML =2 AEE B

book XML document was fragmented into fillers and holes,
and the resulting filler fragments were processed sequentially.

The “section”, “subsection” and “title” are filler fragments
according to the fragment information in tag structure,
@I processed “subsection” and “title” over fragment using
seed label.

In XFrag, each fragment needs to be passed on through
the pipeline and evaluated step by step. (Fig. 6) shows the
query processing time over four queries. During query
processing, the time was measured on the client side. In the
experiments, the proposed scheme outperforms the other
approaches. It is observed that XFPro outperforms XFrag
mostly on query processing time. XFPro reduced CPU time
which avoids subsumption operations for query processing
time. However, it was not better than the proposed scheme

et ng Vime (4

ML doc v (ME)

LR Q2

o o

W Frzposed Schame

XML doc aize (MEB)

i =

Processing tme (z)

as

Processingtime (s)
Bt bs @ s B
r - .

XML doc size (MB)

40 4 g XFrg Q4

Processingtime (s)

XML doc size (MB)

(Fig. 6) Query processing time

9 HMEIE S8t =82l MOS8 7I1% 357

because XFPro can not remove intermediate fillers when
queries including “*" or “//”. When the depth increases, the
processing time of both XFrag and XFPro gets also poor
due to intermediate fillers.

In (Fig. 6), XFrag is shown to be costly as the
document size increased. In XFPro, the query processing
pipeline is improved over XFrag because it just considers
subroot nodes. However, many intermediate fillers occur
for queries including “*” or “//". The proposed scheme
shows the best performance for two queries because it
removed redundant processing operations. Moreover, the
proposed labeling scheme minimized the number of
fragments being processed using (2. Comparing the
proposed scheme with XFPro in terms of processing time,

11}

Memary Uige (W8]

"
=
E o
. *
3
a3
| h l
i
z
B XFrg Q3
8 B XFPro
=
B X ® proposed Scheme
& ¢
2 5
= 5
=
o
E
&
E iix ik
5M 10M 150
XML doc size (MB)
8 e
g - ® XFFro
g ;
- ® proposed Scheme
3 5
2 .
= 4
E 3

XML doc size (MB)

(Fig. 7) Memory usage



B8 BEXMZEZ=EAID M0 HS=(2010.10)

the improvement ratio is 30% (QI) 40% (Q2), 49% (Q3)
and 23% () XFPro at 20MB XML document, respectively.

(Fig. 7) shows the memory usage for different document
size. In the proposed scheme, memory usage is less sensitive
to size since many intermediate fillers are removed. In
XFrag and XFPro, memory usage gets worse with the
increased size. However, XFPro performs better than XFrag
because XFPro just considers subroot nodes while the
XFrag deals with all operators in pipeline. Comparing the
proposed scheme with XFPro in terms of memory usage, the
improvement ratio is 30% (Q1),10% (Q2), 15% (@3) and 23%
(Q4) at 20MB XML document, respectively.

5. Conclusion

This paper has proposed the novel labeling scheme for
query processing over XML fragment stream using
Hole-Filler model. The proposed labeling scheme can
determine structural relationships between fragments very
quickly, Thus, we can efficiently process structural
relationships such as “//", “/", and branching nodes.

The conducted experimental results have shown that
the proposed labeling scheme can reduce the query
processing cost and memory usage cost for queries on
XML fragments. We are currently working with energy
efficient query processing and its evaluation.

References

[1]1 C. Barton, P. Charles, D. Goyal, M. raghavachari, M.
Fontoura, and V. Josifovski, “Streaming XPath Processing
with Forward and Backward Axes,” Proc. of International
Conference on Data Engineering, pp.455-466, 2003.

[21 S. Bose and L. Fegaras, “XFrag: A Query Processing
Framework for Fragmented XML Data,” Proc. of International
Workshop on the Web Databases, pp.97-102, 2005.

[3] D. Carney et al., “Monitoring Streams-A New Class of Data
Management Applications,” Proc. of International Conference
on Very Large Data Bases, pp.215-226, 2002,

[4] L. Fegaras, D. Levine, S. Bose, and V. Chaluvadi, “Query
Processing of Streamed XML Data,” Proc. of International
Conference on Information and Knowledge Management, pp.
126-133, 2002.

[5] A. Gupta and D. Suciu, “Stream Processing of XPath Queries
with Predicates,” Proc. of ACM SIGMOD International
Conference on Management of Data, pp.419-430, 2003.

[6] X Hui, G. Wang, H Huo, C. Xiao, and r. Zhou, “Region-Based
Coding for Queries over Streamed XML Fragments,” Proc.
of International Conference in Web Information Systems
Engineering, pp.487-498, 2006.

[71 B. Ludascher, Y. Papakonstantinou, and P. Velikhov,
“Navigation-Driven Evaluation of Virtual Mediated Views,"
Proc. of International Conference of Extending Data Base
Technology, pp.150-165, 2000.

(8] D. Olteanu, T. Furche, and F. Bry, “An Efficient Single-Pass
Query Evaluator for XML Data Streams,” Proc. of ACM
Symposium on Applied Computing, pp.627-631, 2004.

[9] F. Peng and S. Chawathe, “XPath Queries on Streaming
Data,” Proc. of ACM SIGMOD International Conference on
Management of Data, pp.431-442, 2003.

[10] A. Schmidt, F. Vaas, M. L. Kersten, M. J. Carey, L
Manolescu, and R. Busse, “XMark: A Benchmark for XML
Data Management,” Proc. of International Conference on
Very Large Data Bases, pp. 215-226, 2002.

[11] W3C Recommendation: Extensible Markup Language (XML)
1.0 (Second Edition). http://www.w3.org/TR/REC-xml.

[12] W3C Working Draft: XML Path Language (XPath), version
2.0 (2001) Technical Report WD-xpath20-20011220, W3C,
2001, http://www.w3.org/TR/WD-xpath2020011220.

[13] W3C Working Draft: XQuery 1.0: An XML Query Language.
(2001) Technical Report WD-xquery-20010607, World Wide
Web Consortium.

[14]) http://eclipsecolorer.sourceforge.net/indexprofiler.html.

[15] Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram,
E. Shekita, and C. Zhang, “Storing and Querying Ordered
XML Using a Relational Database System,” Proc. of ACM
SIGMOD International Conference on Management of Data,
pp.204-215, 2002.

[16] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M.
Lohman, “On Supporting Containment Queries in Relational
Database Management Systems,” Proc. of ACM SIGMOD
International Conference on Management of Data, pp.
425-436, 2001.

[17] Jun-Ki Min, Myung-Jae Park, and Chin-Wan Chung,
“XTREAM: An Efficient Multi-query Evaluation on
Streaming XML Data,” Vol.177, No.17, pp.3519-3538, 2007.

[18] Guoren Wang, Huan Huo, Donghong Han, and Xiaoyun Hui,
“Query Processing and Optimization Techniques over
Streamed Fragmented XML,” World Wide Web, Vol.11, No.3,
pp.339-359, 2008.

_ sz
e-mail : hkko@kaist.ac.kr

19999 F8diga 7 Fe 2stai(dah

20029 FEoista A abA Ak o] 8H4 A}

20089 mejoighal 73 FFE] 8h(o] ShubAL)

20089 ~20093 :eoigtn ARFAVE
dF4 dFtug

20003 ~8 A sFntr)Ed dAsa dtus

Aol XML dlo|Ello] £ XML Security, A€ <, Steam
dlole] #e], 2E&4] #a], Service-Oriented Computing





