Minimum Vertex Cover M0l CHSE SMUDEIE HE 600
DOI: 10.3745/KIPSTB.2008.15-B.6.609

Minimum Vertex Cover Ao i3 AL 1= A&

F’Oln

b2 3

2

+

Rt
i

gf

G=(V, E) & o P34 ad=g 32 Minimum Vertex Cover (MVC) Bal= C 8 V o 3% ol & nf RE 7HMES0] C
ule] Ha § A A QA He #a A7 C § Adse Aol e B 2 o FAg nfAAZ B FAE NP-hard F4)
o] FHEAt ¥ =FdME MVC £4E 9% LeafGA 2= M2F #4 neFe ANty £3 AAE dnese de 98 2 7)

T =S HEPorM 1 5EEA4E B

II9E : RER ¢2FE, 2T, Minimum Vertex Cover 2H|

Applying Genetic Algorithm to the Minimum Vertex Cover Problem

Keunhee Han' - Chansoo Kim"™

ABSTRACT

Let GG = (V, E) be a simple undirected graph. The Minimum Vertex Cover (MVC) problem is to find a minimum subset C of V such
that for every edge, at least one of its endpoints should be included in C. Like many other graph theoretic problems this problem is also
known to be NP-hard. In this paper, we propose a genetic algorithm called LeafGA for MVC problem and show the performance of the
proposed algorithm by applying it to several published benchmark graphs.

Keywords : Genetic Algorithm, Graph, Minimum Vertex Cover Problem

1. Introduction

Let G = (V, E) be a simple undirected graph, where V
(or V(@) is the set of vertices and F (or E(G®) is the
set of edges. The Minimum Vertex Cover (MVC) pro-
blem is to find a minimum subset C of V such that for
every edge, at least one of its endpoints should be in-
cluded in C. If we let n = |[V] and C be a subset of V,
then MVC can be mathematically defined as follows:

Minimize, Zxzc %

Subject to i i (1= x)(1=%)= 0, where A = (a)
is the adjacency matrix of the graph G, and x = (x), j =
1, 2, .., n, and

{1, if v;eC
Xi =10, otherwise-

T390 FFo e g8}
48 o FFda st
= 20089 99 17¢
+ 44
4 i

LRl
i
o

il
Ll Al A 2}

2112 20089 109 239
020084 109 239

Vertex cover problem has its applications in the area
of VLSI design, scheduling, computer networking and bio-
informatics. This problem is also closely related to the
problems of maximum clique and independent set problems.
However, since MVC problem is known to be NP-hard,
researches have focused on developing approximation and
heuristic algorithms.

Genetic algorithms (GAs), a part of evolutionary com-
puting, were introduced by Holland in 1975 [1]. Since
then GAs have been applied to a large variety of combi-
natorial optimization problems. GAs maintain a population,
which consists of a large number of possible solutions
(chromosomes) and search for good solutions among
them. After generating the initial population selection
operation selects solutions in order to reproduces the
more promising solutions. These selection operations are
based on the fitness values of the solutions. Chromo-
somes with higher fitness values will most likely be
selected to reproduce, whereas, those with lower fitness
values will be discarded. After the selection operation the
chromosomes are subject to the operations of crossover

610 ZH=2X2|szl=EX B M15-B2 HE=(2008.12)

and mutation. Crossover is the operation of combining the
information of two chromosomes (called parents) so that
the new chromosomes (called offsprings) inherit the pro-
perties of both parents. Mutation is the process of changing
the information of chromosome randomly in order to pre-
vent converging the solutions into a local optimum.

GAs have been applied to MVC problem and can be
found in [2, 3, 4]. In [2], the authors applied GA to MVC
problem with infeasible chromosomes and applied their
algorithms to radom graphs, The most obvious encoding
scheme for MVC is to use binary encoding scheme.
However, in [3), the authors suggested a different en-
coding scheme called embedded binary decision diagram.
In [4], the authors investigated the roles of the amounts
of domain knowledge for solving MVC in GAs. They
suggested three GAs with different amounts of embedded
domain knowledge and compared their performance using
B(L, R, E) graphs (defined later).

In this paper, we develop a new genetic algorithm
called LeafGA for MVC problem and analyze the perfor—
mance of the proposed algorithm based on simulations.
The basic idea of LeafGA is to find a vertex v adjacent
to a leaf vertex. This vertex v is included in the partially
built minimum vertex cover and removed from the cur-
rent graph and continue these process in recursive man-
ner until the edge set becomes empty. Note that LeafGA
always maintains only feasible chromosomes.

The rest of this paper is organized as follows: In sec-
tion 2, we prove some properties of MVC and show the
strategies of the proposed genetic algorithm. In section 3,
we apply LeafGA to the benchmark graphs developed by
BHOSLIB [6] and two special classes of graphs. Finally,
in section 4, we conclude our discussion.

2. Genetic Algorithm for MVC

Let VC and MVC denote a vertex cover and minimum
vertex cover of a graph, respectively. The degree of a
vertex v is denoted deg(v), and also as degs(v) whenever
G needs to be distinguished from some other graph also
under consideration. If deg(v) = 1, then we call v a leaf
vertex. Let N(v) be the vertices adjacent to v in G.

2.1 Representation and initialization of chromosomes

In our GA, each chromosome, at all generations, repre-
sents a feasible vertex cover of a given input graph. For
this purpose each chromosome is represented by (0,1)-
vector ¢ of length n, where n = |VI. Therefore, for a
chromosome ¢, if di] = 1 then it means vertex [is in
VC; otherwise it is not in VC.

Finding a vertex cover of a graph G can be done by
performing the following two simple steps repeatedly.

(step 1) Choose a vertex v with degl{v) # 0 and add
v to S.

(step 2) Remove v from G. Let G’ be the resultant
graph. If E(G) # ¢ then go to step L
otherwise stop.

Upon termination of the above procedure it is clear
that the set S contains a VC of a given graph (. There-
fore, in order to find a MVC, special attention must be
paid to the selection of a vertex in step 1. Let v be a
leaf vertex of G and w be the unique vertex adjacent to
v. The edge (v, w) also must be covered by v or w or by
both. However, the following theorem shows that covering
the edge (v, w) by w alone is sufficient for any MVC.

Theorem 2.1. Let M be a MVC of a graph G = (V,
E) such that M contains at least one leaf vertex v. Let

w be the unique vertex adjacent to v in G, then M -
{v} U {w) is a MVC of G.

Proof: If w € M, since M' = M - {v} is also a ver-
tex cover of G, it leads to a contradiction that |M’| <
|[M|. Hence, w & M. Since w &€ M and w is the unique
vertex adjacent to v in G, M - {v} U {w} is also a
MVC of G.

Theorem 2.1 implies that, in step 1 of the above pro-
cedure, we should not select a leaf vertex. Instead, the
unique vertex adjacent to leaf vertex must be selected to
form a better VC. However, if there exists no leaf ver-
tices, we randomly choose a vertex v with deg(v) = 0. Algo-
rithm 2.1 shows the details of computing a VC of a graph.

Algorithm 2.1: Generation of a vertex cover
Procedure generate_ VG, ¢)
remove_deg_one(G, c);
while E(G) = ¢ do
randomly choose a vertex v such that deg(v) # 0
cdvl = 1
if there exists a vertex v such that deg(v) = 1
remove_deg_one(G, c);
rerutn ¢
end-procedure
Procedure remove_deg_one(G, c)

let D = {v € V] deglv) = 1}
while D = ¢ do
randomly choose a vertex v € D and let w be the
vertex adjacent to v;
dw] = 1;
delete v and w from G;
update D, ie., if deletion of v and w generates
other leaf vertices, then add them to D
end-procedure
In our GA, since we always maintain feasible chromo-
somes only, we are able to use simple objective function.

Let VClc) be the set of vertices represented in the

chromosome ¢, ie, VC(e) = {ildil = 1). Then the
objective function is defined as follows:
fle) = IVQe)l.

Therefore, our main objective is to minimize flc) over
all possible chromosomes.

2.2 Genetic Operators

Let py and p; be the two parent chromosomes chosen
for the crossover operation. Since p; and p» are feasible
vertex covers, the vertices contained in both parents
should be inherited to the offspring. We remove these
common vertices and all the edges adjacent to these ver-
tices from (and finally use the procedure generate VC
in order to ensure the feasibility of the offspring. Algo-
rithm 2.2 shows the details of the crossover operation.

Algorithm 2.2. Crossover Operation
procedure crossover((:, p1, po, 0)
fori=0ton - 1do
if pilil = pali] = 1 then
oli] = 1;
remove vertex i from G
generate_VC(G, o),
end-procedure

Let ¢ be a chromosome and v € V(l¢) of an input
graph G = (V, E). Since V(lc) is a vertex cover of G,
clearly, N(v) € V(Clc). Therefore, if we add v to VCle),
then some vertices of N(v) can be excluded from VC(c)
while maintaining the feasibility of V((c). Let w € N(v)
and W = {z € N(w)| z &€ VC(c)}). Then, after we add v
to V(l¢), we can remove the vertex w from VC(c) if W
= ¢. We use this idea as mutation operator. Algorithm
2.3 shows the details of the mutation operation.

Algorithm 2.3. Mutation Operation
procedure mutationOne((, ¢, v)
dvl=Liont=0 ¢ =¢
for each vertex w adjacent to v do
let W=1{z € Nuw) z & VCQc)}
if W=1¢
cnt = ent + 1,
dwl = 0:
if ent < 1
return ¢’
else
return ¢
end-procedure

/v & VO

In Algorithm 2.3, the variable ent counts the number of
vertices that removed from V((c) after adding v to
VC(c). At the end of this procedure if the value of ent is
less than one then it means the mutation operation only
degenerates the input chromosome. Therefore, in this case,

ilE]

Minimum Vertex Cover 2HMI0Il CHS KEL DS HE 611
we return the original chromosome, 1.e., the mutation opera-
tion does not change the input chromosome ¢ in any way.
Since the operator mutationOne prevents degenerating
chromosomes, its capabilities as a mutation operator is
somewhat limited. Therefore, in order to introduce new
chromosomes info population, we use another mutation
operator called mutationTwo as shown in Algorithm 2.4.

Algorithm 2.4. Mutation Operation
procedure mutationTwolG, c)
fori =0ton - 1do

if cil =1
il = 0
else
dil = 1;

remove vertex I from G
generate_VC(G,)
end

Note that mutationTwo also only generates feasible
vertex covers.

For the selection we use roulette wheel selection me-
chanism with slots sized proportionally to the fitness of
the chromosomes. LeafGA also enforces eliticism which
ensures the most highly fit chromosome of the current
population is passed on to the next generation.

3. Experiments

In [4], Jun He et. al. adapted two classes of test
graphs in order to measure the performances of their
proposed genetic algorithms for MVC. The first class of
test graphs contains an odd number of vertices where

V= Au, ..., n),
E = {(v, v2), v2, v3), ..., (vn-1, v,), (v, v2)}

Since this graph is very similar to the cycle, it is not
hard to see that MVC should contain the vertices {uvs, v,
. Un-1h. Therefore, the value of optimum MVC is (n -
1)/2. However, as noted in [4], for any approximation
algorithm, it is easy to fall into local optimum of the
value (n + 1)/2. The definition of the second class of test
graphs called B(L, R, E) is as follows: The vertex set L
consists of r vertices. The vertex R is further sub-
divided into r sets called R,,.., R, Each vertex in R, has
an edge to i vertices in L and no two vertices in R; have
a common neighbor in L. Note that B(L, R, E) is a
bipartite graph and it is easy to verify that the partite
set L is a MVC of B(L, R, E). We also note that the
graph B(L, R, F) , which is hard for deterministic greedy
search algorithm, was originally defined in [5).

Even though these two classes of test graphs are
expected to be hard instances for any heuristic algorithm
for MVC problem, it is evident that the procedure

612 E=xlstzl=2X B M15-BT H6=(2008.12)

generate_VC can always find optimum solutions for these
classes of graphs. For example, if we apply generate VC
to B(L, R, E), since all the vertices in) has degree one
and each vertices in L has unique neighbor in Rj, all the
vertices in L will be included in the chromosome. After
that no vertices in the set B2 ~ R, will be added to the
chromosome since the edge set of G is empty.

Since the two classes of test graphs used in [3] are
trivial instances for LeafGA, in order to measure the per-
formances of LeafGA we choose the benchmark graphs
developed by BHOSLIB [6] as the test graphs. These
graphs are available on the Internet.

<Table 3.1> contains the results of executing LeafGA for
each instance of the BHOSLIB test graphs. Even though
the full set of BHOSLIB contains 40 graphs we selected
only 8 representative graphs for the tests since the re-
sults of the other graphs are very similar. For each ins-
tance graph we executed LeafGA ten times and included
the results of best, worst and average fitness values in
<Table 3.1> For these tests we used the population size of
40, crossover rate of 0.8. For the two mutation operators
mutationOne and mutationTwo we used the mutation
rates of 0.07 and 002, respectively. For the termination
condition we used fixed number of iteration of 2,000.

The last column of <Table 3.1> shows the results of
CKACS algorithm developed for MVC by Gimour et. al.
[7]. It shows the average MCS values of ten executions
of their algorithm on the same set of instance graphs.
Note that CKACS is an Ant Colony Algorithm.

From <Table 3.1> we can see that LeafGA can find
MVC of each test graphs very close to their optimum
values. It also shows that LeafGA is not sensitive to the
size of the input graphs. In all instances, based on the
average values, LeafGA shows much better performance
than CKACS does. Also, the narrow gaps between best
and worst fitness values indicate that the performance of
LeafGA is very steady.

(Table 3.1 LeafGA performance for BHOSLIB graphs

Graphs LeafGA CKACS
Instance | [Vl | |El |optimum|best |worst|average| average
frh30-15-1] 450 | 17827 | 420 | 420 | 423 | 4222 4240
frb35-17-1| 59 | 27856 | 560 | 562 | 564 | 5629 5655
frb40-19-1 | 760 | 41314 720 73| 725 | 7236 7256
frbd5-21-1] 945 | 59186 | 900 | 904 | 906 | 9045 908.2
frb50-23-1 | 1150 | 80072 | 1100 |1103] 1106 | 1105 11104
frb53-24-1 | 1272 | 94227 | 1219 1222|1226 | 12245 | 12299
frho6-25-1 | 1400 |109676| 1344 |1347| 1351 | 13494 | 13568
frb59-26-1 | 1534 [126555] 1475 [1480| 1483 | 14809 | 1486.8

4. Conclusions

In this paper, we developed a new genetic algorithm

called LeafGA for the minimum vertex cover problem. We
proved that leaf vertices should not be included in MVC,
and based on this property LeafGA selects the vertices
adjacent to leaf vertices recursively to form a feasible
vertex cover. Finally, we showed the performance of LeafGA
by applying it to known benchmark graphs.

Reference

[1] Holland, J., “Adaptation in natural and artificial systems,”
University of Michigan Press, Ann Arbor, 1975.

[2] S. Khuri and T. Back, “An evolutionary heuristic for the
minimum vertex cover problem,” Proc. of the KI-9%4
Workshop, pp.86-90, 1994

[3] I K. Evans, “Evolutionary algorithms for vertex cover,”
Lecture Notes in Computer Science, Vol. 1477, pp.377-386,
1998.

[4] Jun He, Xin Yao and Jin Li, “A comparative study of three
evolutionary algorithms incorporating different amounts of
domain knowledge for node covering problem,” IEEE Tran-
sactions on Systems, Man and Cybemetics, Part C 35(2),
pp.266-271, 2005.

[5] R. Motwani, “Lecture notes on approximation algorithms:
Volume 1" Tech. Rep. CS-TR-92-1435, Stanford University,
Department of Computer Science, Stanford University, CA,
1992.

[6] Xu, K, “BHOSLIB: Benchmarks with hidden optimum
solutions for graph problems (maximum clique, maximum
independent set, minimum vertex cover and vertex coloring)
- hiding exact solutions in random graphs,” Web site,
http://www.nlsde.buaa.edu.en/ ~kexu/benchmarks/graph-
benchmarks.htm.

[7) Gilmour, S. and Dras, M., “Kemnelization as heuristic structure
for the vertex cover problem,” In proceedings of the Third
Workshop on Ant Colony Optimization and Swarm Intel-
ligence (ANTS 2006), Brussels, Belgium, 2006.

gt =2 =
e-mail : kehan@kongju.ac.kr
198613 A=dstw 2] sta(Eah
199214 Univ. of Central Oklahoma &8
o 8t 2h(o] 3H4A})
1 199613 Univ. of Oklahoma % ¥ €] =t}
(o] HukAh)
1996 ~20001d g d AHE A A4l
1999 ~2000d ©v]=F NIST A1d+4
20008 ~@ A FFoistn 48T Fauy
gha]Eof: 2| &312]E, Genetic Algorithm

&5
e-mail : chanskim@kongju.ac.kr
1991 S-Abohstal 2 AHE A et
19974 BAbchstaL EA|staK o] shaAp
2002 ~& A FFofstn §E&E
ug

B Rol : Holxet HIESA fd dxeE

e’
a7,

