전화번호에 대응하는 한국어 별명 생성을 위한 전화기 한글 자판과 생성 방안

최 재 혁'•정 재 열"

요 약

퉁신 수단이 엄청나게 발전한 지금, 대부분의 사람들은 $2 \sim 3$ 개의 전화번호률 가지고 있어 개인마다 기억해야 할 전화번호의 수가 굥장히 늘 어나고 있다. 따라서 전화번호를 쇱게 기억할 수 있는 방법이 절실히 필요하다. 기존의 방법은 "뺄리뺄리", "이사이사"와 같이 4 글자 한글 단어 의 초성과 숫자의 우리 말 음과 유사한 글자를 이용하여 전화번호에 대옹하는 한국어 별명을 사용하여 왔다. 그러나 이러한 방법은 모든 전화 번호에 대한 한글 단어를 생성하지 못하여 몇 개의 전화번호에 대해서만 사용이 가능하다. 본 논문은 한글의 타전수를 줄임과 동시에 전화번호 를 외우기 숴운 한글 별명으로의 생성을 동시에 고려한 전화기 한글 자판을 제안한다. 또한 모든 4 자리 전화번호에 대응하는 한국어 별명의 생 성 방법을 제안하고, 3 자리 혹은 4 자리 국번을 포함한 7 자리 혹은 8 자리 전화번호에 대한 한국어 별명을 생성할 수 있는 한국어 별명의 형태를 제시한다.

A Development of Hangul-Phone Keyboard and a Generation Method for Korean Nickname of Telephone Number

Jae-Hyuk Choi ${ }^{\dagger}$. Jae-Yeul Chung ${ }^{\dagger \dagger}$

Abstract

With the enormous advance of communication technology, telephone numbers to be memorized is increased because most people have a lot of telephone numbers. Thus it needs a method for people to easily memorize those telephone numbers. A traditional method is to use Korean nickname by 4 syllable Korean words such as "Pal-li Pal-li," "Yi-sa Yi-sa" whose initial sounds are corresponding to Korean sounds of telephone numbers. However, this method does not apply to all the telephone numbers, and only apply to a few telephone numbers. This paper proposed a Hangul-phone keyboard (TELNICK) considering the reduction of finger's moving distance and the number of strokes, and the generation of Korean nicknames for easy memorizing. This paper also proposes a method to generate many Korean nicknames that can correspond to 4-digit or 3-digit telephone numbers by using TELNICK keyboard and presents the form of Korean nicknames that can correspond to 7-digit or 8-digit telephone numbers.

키워드 : 전화기 한글 자판, 한국어 변명 생성, 전화기 자푠, 전화번호

1. 서 론

디지털 혁명 시대라 불리는 오늘날, 휴대폰의 사용자가 기 하 급수적으로 늘어나고 있으며, 특히 휴대폰을 이용한 문자 정보의 전송은 휴대폰의 폭발적인 보급률과 맞물려 급격히 증가하고 있다. 이를 위해 전화기에 있는 ' 0 '~ ${ }^{\prime} 9$ ', '*', '\#'을 포함한 12 개의 버튼을 이용하여 한글 문자를 전송하고 있다. 기존 휴대폰 자판의 경우, 한글 자판 설계시에 타전수나 운 지거리, 타자 방식 둥의 자판 입력 효율성보다는 가급적 적 은 문자의 표시와 같은 자판의 단순화를 위한 디자인에 치

[^0]중한 경향이 있다. 이로 인하여 한 글자당 타건수가 너무 많 아 휴대폰 자판에 익숙하지 않은 사람들은 상당히 많은 시 간을 소비하고 있다[1,2]. 따라서 타전수와 운지거리 등 전 화기 한글 자판의 입력 효율성을 고려한 전화기 한글 자판 의 개발이 절실히 요구되고 있다.
개인마다 기억해야 하는 전화번호의 수가 급격히 늘어나고 있으며, 이러한 전화번호률 일일이 전화 수첩이나 명함 보관함, 또는 휻대폰의 저장 기능을 이용하여 찾아야 하는 것도 보통 성가신 일이 아니다. 또한 희사, 기업, 상점 둥은 상호명을, 영 업을 하는 사람들은 자기 이름이나 영업 목적에 맞는 한국어 단어를 자신의 전화번호의 별명으로 갖는다면 주위의 사람들 이 쉽게 기억할 수 있어 상당한 영업 효과를 가질 수 있을 것 이다. 따라서 전화번호률 쉅게 암기할 수 있도록 한국어 별

명을 생성하는 시스템의 개발 또한 요구되고 있다［2］．
본 연구는 한글의 타건수와 운지거리를 줄임과 전화번호를 외우기 쉬운 한국어 별명으로의 생성을 동시에 고려한 전화기 한글 자판을 제안한다．또한 모든 4 자리 전화번호에 대웅하는 한국어 별명의 생성 방법을 제안하고， 3 자리 혹은 4 자리 국번 을 포함한 7 자리 혹은 8 자리 전화번호에 대한 한국어 별명을 생성할 수 있는 방법으로 한국어 단어의 형태를 제시한다．

2．전화기 한글 자판

2.1 기존의 전화기 한글 자판

전화기 한글 자판의 효율성을 평가하는 일반적인 기준으 로는 학습 용이성과 입력 효율성을 들 수 있다．학습 용이성 올 결정하는 요인으로는 자모 및 기능 버튼의 위치 탐색 용 이성，자모나 기능 버튼의 쉬운 기억을 위한 위치 부담 요 인，입력 방식의 규칙성 둥이 있다．입력 효율성을 평가하기 위한 요인으로는 타건수，운지거리，오타 가능성，오타 수정 용이성 둥이 있다［3－5］．
이러한 전화기 한글 자판의 효율성을 평가하는 기준들 중 에서 학습 용이성은 논리적인 측면에서 평가하는 것은 가능 하지만，이를 계량적으로 평가하는 것은 쉽지 않다．또한 입 력 효율성 기준에서 오타 가능성과 오타 수정 가능성도 계 량적인 측면보다는 논리적인 측면으로 평가하는 것이 더 용 이하다．따라서 한글 입력 속도에 많은 영향을 미치는 타건 수와 운지거리 요인들은 쉽게 계량적으로 평가할 수 있어， 일반적으로 이 두 요인들을 가지고 전화기 자판의 효율성을 평가한다［3］．일반적으로 글자당 평균 타건수가 늘어나면，늘 어난 타건수만큼 이동해야 하는 글자당 평균 운지거리도 같 이 늘어난다．따라서 타전수를 줄이는 것이 전화기 자판의 효율성에 있어서 무엇보다 중요하다．
（그림 1）은 삼성 천지인 자판의 예시도이다．이 자판의 특 징은 모음을 전부 나타내지 않고＇$]^{\prime}$, ＇－＇，＇．＇ 3 가지만을 이용하여 자판을 단순화시켰고 모음을 쉽게 타자칠 수 있도 록 한 것이다．그러나 이 자판을 논리적으로 평가하는 학습 용이성 측면에서 보면，모음은 3 가지 키만을 이용하기 때문 에 기존의 자판 중에서 모음을 외우기가 가장 숴우나，자음 의 배치는 일정한 규칙이 없어 자판을 외우기가 조금 어려 운 위치 기억 부담 요인이 발생한다．또한 입력 효율성 측면 에서는 한글 한 글자당 평균 타건수와 운지거리가 다른 자판 에 비해 상대적으로 많은 것으로 조사되었다［3］．글자 당 평 균 타건수가 많은 이유는 복모음의 타전수가 상당히 많기 때문이다．예를 들어，＇대＇와 같은 복모음은＂•－1•1＂와 같이 5 번을 눌러야 한다．이 자판의 또 다른 문제점으로 자 음은 4 번 버튼부터 배치되어 있고 $1,2,3$ 버튼에 대해서는 모음만 배치되어 있어 $1,2,3$ 으로 시작하는 전화번호에 대 해서는 한국어 별명의 생성이 불가능하여 한국어 별명을 생 성하기 위한 자판으로는 부적당하다．

1	2	3
4	5	6
フヲ	늘	CE
7	8	9
HII	人才	ス天
＊	0	\＃
	－	

（그림 1）삼성 천지인 자판 예시도

1		2		3	1	1
4	ㄱ	5	\square	6	1	
7	\wedge	8	0	9	1	
$*$		0		$\#$		

（그림 2）LG 사이언 자판 예시도
（그림 2）는 LG 사이언 자퐌 예시도이다． 10 개의 버튼에서 자음은 6 개，모음은 4 개의 버튼에만 배치하고 $*$ 버튼을 이용 하여 획수가 추가되는 자모옴을，\＃버튼을 이용하여 복자음을 표시하도록 하였다．암기해야 하는 자음과 모음의 수가 기존 의 자판 중에서 가장 적어 학습 용이성 측면에서는 상당히 우수한 것으로 판단된다．입력 효율성 측면에서는，한글자당 평균 타건수와 평균 운지거리는 천지인 자판보다 줗은 것으 로 본 연구에서 조사되었다．이 자판의 가장 큰 특징은 각 버튼이 한 개의 자음만을 가짐으로 인해 글자 완성키 $(->)$ 를 사용하지 않고 글자를 분리할 수 있다는 것이다．예를 들어， 천지인 자퐌의 경우는＂학교＂와 같이 글자의 종성과 다음 글 자의 초성이 같은 버튼에 있을때는 글자 완성키＇\rightarrow ’＇를 사용 하든지 아니면 $2 \sim 3$ 초률 기다려야 한다．그러나 이 자판도 천지인 자판과 마찬가지로 $3,6,9,0$ 번 버튼에는 모음만 배 당되어 있어， $3,6,9,0$ 으로 시작하는 번호에 대해서는 한국 어 별명 생성이 불가능하다는 문제점을 가지고 있다．
（그림 3）은 양기호씨가 개발한 한글 자판 예시도이다．이 자판은 한국어 별명 생성올 고려한 유일한 자판이다．이 자 판의 특징은 전화번호에 대웅하는 한국어 별명의 생성을 위 해 숫자의 발음과 유사한 자음을 배치시킨 것이다．예를 들 어，＇ㄱ은 9（구），＇ㄴㄴ＇은 6（뉵），＇ㄷ＇은 5（다섯），＇ㄹ＇은 2（리）， ＇ㅁㅁ＇은 3（삼 ：반침）둥으로 배치하였다．이 자판을 이용하여 타자블 칠 경우，＂ㄱ，ㄴ，ㄷ，ㄹ，ㅁ，ㅂ，ㅅ，ㅇ，ㅈ，흐＂은 한번만 누르고，＂天，ㄱ，ㅌ，파＂은＊를 누른 후 버튼을 누르도록，＂꾸， ㄸ․，벼，ㅆ，ㅈx＂은＊률 두 번 누른 후 버튼을 누르도록 되어 있다．모음은 자음과 구분하기 위해＂\＃＇을 누른 후 버튼올 누르 도록 되어있다．예를 들면，＂홍길동＂은 1\＃50 9\＃52 5\＃50，＂재 즈카페＂는 7\＃1\＃0 7\＃9＊9\＃1＊8\＃3\＃0을 눌러야 한다．이 자판 의 장점은 기존의 전화번호에 대응하는 단어（뺄리빨리 ： 8282 ， 사고팔고：4989）를 그대로 사용할 수 있다는 것이다．그러나 이 자판의 글자 당 평균 타건수는 삼성의 천지인 자판과 비 숫하여 기존의 다른 자퐌에 비해 상대적으로 타건수가 많을 뿐만아니라，전화 국번의 시작 번호에 사용되지 않는 0 에 대

해 가장 많이 사용하는 모음인＇ 0 ＇을，우리 말의 두음법칙으 로 인해 단어의 첫 글자에 많이 사용하지 않는＇ e ＇과 많이 사용하지 않는 모음인＇k＇를 같이 배치하는 등 자모의 사용 빈도수나 전화번호의 특성 등을 고려하지 않아，많은 단어의 생성에는 부적합하다．즉 숫자의 발음에 기반한 자판 배치이 므로 모든 전화번호（0000－9999）에 대해 적당한 한국어 별 명을 생성하지 못하는 번호가 너무 많이 생긴다는 문제점을 내포하고 있다［2］．

	2 2	3 ［
4 人 \ddagger		6 ：
$7 \text { 天天仅 }$	8 ㅂㅍㅍ⽇ㅕㅕ IT	9 フヲサ1
＊	00	\＃

（그림 3）양기호씨의 자판 예시도
$\left.\begin{array}{|c|c|c|}\hline 1 \begin{array}{c}\text { ㄱ } \\ k\end{array} & 2 \text { ц } \\ \text { 土 }\end{array}\right]$
（그림 4）현대 자판 예시도
（그림 4）는 현대 휴대폰의 자판 예시도이다．이 자판에서 자

음은 순서대로 배치되어 있어 외우기가 쉬우나，모음은 일정 한 순서없이 같은 버튼의 자음과 많이 결합하지 않는 모음 으로 배치되어 있어 외우기가 어려운 위치 기억 부담 요인이 있다．이 자판은 자음과 모음이 10 개의 버튼에 골고루 배치 되어 있어 타건수와 운지거리 측면에서는 다른 자판에 비해 월등히 우수하다．하지만 844 와 같이 같은 번호를 연속적으 로 눌러야 할때，복모음과 받침，혹은 복자음과 모음올 구분 할 수 있도록 강제적으로 글자를 선택해야 하는 불편함이 있다．예를 들어， 844 는＇울＇과＇워＇두 글자 중 한 글자를 선 택하여야 한다．또한 한 글자가 끝난 다음에는 반드시 글자 완성키＇－＞＇을 누르던지 아니면 5초를 기다려야 한다．한국 어 별명 생성을 위해 10 개의 숫자를 모두 사용할 수 있으므 로 기존의 자판보다는 별명 생성이 우수하다．하지만 자음과 모음의 사용 빈도 수를 고려하지 않고 자음과 모음을 배치 함으로 인해 많은 한국어 별명의 생성은 기대할 수 없다．

2.2 한국어 별명 생성율 위한 전화기 자판

기존의 전화기 한글 자판은 자판의 단순성，타건수 감소， 쉬운 타자 방식，자판의 쉬운 암기，전화번호의 쉬운 암기 중 에서 대부분 어느 한두 가지만을 충족시킨다．앞으로의 정보 화 시대에 있어서는 위의 어느것도 소홀히 할 수 없다．따라 서 본 연구는 위의 모든 사항들을 충족할 수 있는 전화기 자판 의 개발과 이 자판을 이용하여 전화번호에 대웅하는 많은 한 국어 별명을 생성할 수 있는 자판의 개발에 주안점을 두었다．

〈표 1〉27만 한국어 단어에 대한 굴자 수에 따른 자음의 사용 빈도 수

	1 글자 단어		2 글자 단어		3 글자 단어			4 글자 이상 단어				계
	초 성	종 성	초 성	초 성	초 성	초 성	초 성	초 성	초 성	초 성	초 성	
7	106	150	6645	6221	9120	7868	8740	17828	15201	16037	15693	103609
77	50	0	381	363	628	389	471	1053	981	625	475	5416
ᄂ	68	128	2001	1732	2614	2385	2690	5162	4537	6123	5233	32673
ᄃ	64	23	2722	2855	4354	4657	4843	9629	9750	10874	10168	59939
u	32	0	295	349	422	357	367	737	607	509	398	4073
己	32	168	621	3853	1187	6747	6550	3308	18535	10978	17104	69083
口	69	104	3374	3124	4948	4046	4464	10292	7217	8089	6521	52248
ㅂ	74	64	4544	3773	7100	4797	4487	14388	8474	10304	7926	65930
빠	24	0	146	128	216	139	100	393	228	234	192	1800
人	87	63	5792	5944	8823	9026	8675	17577	18838	17706	16516	109047
从	31	0	199	274	400	247	277	574	491	285	300	3078
\bigcirc	138	4	8018	6407	11820	10213	8704	25883	21943	20763	23665	137558
ᄌ	81	131	5171	5354	7294	7407	8499	14727	14490	15484	14563	93201
如	23	0	141	273	166	225	242	365	488	235	247	2405
夫	40	19	3253	3351	2732	2996	2623	4696	4902	3948	4166	32726
7	37	13	388	629	532	984	927	1439	2983	3196	3783	14911
E	45	1	1458	1640	1385	1898	1870	3279	5136	5944	4903	27559
파	46	21	1980	1841	2365	1935	1835	6775	4079	4333	3952	29142
б	78	16	4341	3360	4418	4208	4160	8725	7970	11163	11025	59464
합 계	1125	905	51470		70524			146830				903862

〈표 2〉27만 한국어 단어에 대한 글자 수에 따톤 모음의 사용 빈도 수

	1 글자 단어	2 글자 단어		3 글자 단어	계		1 글자 단어	2 굴자 단어		$\begin{aligned} & 3 \text { 글자 } \\ & \text { 단어 } \end{aligned}$	계
	중성	$\begin{gathered} 1 \text { 번졔 글자 } \\ \text { 중성 } \\ \hline \end{gathered}$	$\begin{gathered} 2 \text { 번졋 글자 } \\ \text { 중성 } \\ \hline \hline \end{gathered}$	3 번쪠 글자 중성			중성	1 번졔 글자 중성	$\begin{gathered} 2 \text { 번쩨 글자 } \\ \text { 중성 } \end{gathered}$	3 번쩨 글자 중성	
「	176	10157	9677	13216	33226	4	29	950	635	1402	3016
H	88	3466	3075	2970	9599	1.	15	783	800	661	2259
F	20	721.	806	527	2074	T	111	5692	5240	6933	17976
月	4	6	1	1	12	Th	12	499	482	755	1748
\ddagger	118	5432	5582	7430	18562	TH｜	10	115	69	28	222
\｜	57	1508	1357	2210	5132	T	31	751	506	501	1789
\ddagger	54	3196	3757	4371	11377	π	19	824	829	997	2669
\＃	6	515	530	517	1568	－	66	2442	3112	5521	11141
」	146	7018	6586	7821	21571	－1	6	248	275	204	733
가	23	1458	1231	1556	4268	1	119	5493	6822	12888	25322
개	15	197	98	13	323	합계	1125	51	70	70522	174587

앞으로 본 연구에서 개발한 자판올 TELNICK（TELephone NICKname）자판이라 한다．

자판 개발시 과학적인 근거애 기반하기 위하여 본 연구 이 전에 개발한 시스템에서 구축한 27 만 한국어 단어 사전을 이 용하여［6－8］，이들 한국어 단어의 글자 수에 따른 자음과 모 음의 사용 빈도 수를 조사하고，이를＜표 1 ＞과＜표 2 ＞에서 제시한다．종성에 사용되는 자음은 전화번호에 대웅하는 한 국어 별명 생성시에 1 글자 단어에서만 사용되므로， 2 글자 이 상의 단어에서는 조사하지 않았다．

이러한 조사를 퉁해 얻은 결과로부터 타건수률 감소시키 는 여러 후보 자판들을 만든 후，이들 후보 자판 각각에 대해， 27 만 한국어 단어를 기본 자료로 하여 0000 ～ 9999 까지 10,000 개의 전화번호에 대웅하는 한국어 별명이 얼마나 많이 그리 고 골고루 생성하는 지를 프로그램을 퉁해 조사하고 분석하 여（그림 5）와 같은 자판을 개발하였다．

$1{ }_{1}$ ᄃᄄ	$\begin{gathered} 2 \text { 늪ㅍ } \\ \text { H上: } \end{gathered}$	$\begin{gathered} 37 \\ 1 \end{gathered}$		
$\begin{gathered} 4 \text { ㅂ 뻬 } \\ \exists\\|\\| \end{gathered}$	$\begin{gathered} 5 \square \mathrm{E} \\ \hline \end{gathered}$			
$\begin{gathered} 7 \pi \text { 쪼 } \\ T \end{gathered}$	8 o 페ㅁㅔㅔㅔㅔ	$\begin{aligned} & 9 \text { 人 从 } \\ & -1 \end{aligned}$		
<자모>		" < 공낵 >		

（그림 5）TELNICK 자판
＜표 3＞은 27 만 한국어 단어에 대한 TELNICK 자판의 자음과 모음의 사용 빈도 수를 나타낸 것이다．＜표 3＞에서 자 음의 빈도 수는（ 27 만 한국어 단어에서 첫 글자의 초성에 사 용되는 횟수， 27 만 한국어 단어에서 모든 글자의 초성에 사 용되는 헷수）의 쌍을 의미하며，모음의 빈도 수는 3 글자 이하 의 한국어 단어에서 사용되는 모음의 횟수를 의미한다．톡히 자음은 한국어 단어의 첫 글자에 사용되는 빈도 수와 모든

단어 글자에 사용되는 빈도 수를 분리하여 조사하였다．이러 한 조사는 하나의 자판에 들어가야 하는 자음과 모음의 효 율적인 배치률 위해서는 매우 중요한 작업이다．

〈표 3〉 TELNICK 자판의 자옴과 모음 빈도 수

자 음	빈도 수	모 음	빈도 수	
ㄱ， 71	（35811，109025）	＋	33226	
ㄴ，표	（20386，62415）	H，F，月	11685	
ᄃ．따	（18255，64012）	\dagger	18567	
ᄅ，б	（22710，128547）	$\ddagger, \\|$ ，师	18077	
口，E	（24850，79807）	－	21571	
ㅂ，빠	（26885，67730）	가，나，니，내	9866	
人，从	（33485，112125）	T	17976	
0	（45859，137558）	T，저，디，께	6428	
天，吸	（27968，95606）	－，－1	11874	
夫，\neg	（13117，47637）	1	25322	

자판의 단순성，타건수 감소，쉬운 타자 방식，자판의 쉬운 암기，전화번호의 쉬운 암기를 위한 많은 한국어 별명의 생성 등을 해결하기 위해，본 연구에서 개발한（그립 4）의 TELNICK 자판 설계시에 다음과 같은 사항들을 고려하였다．
첫째，타자 방식을 컴퓨터 워드프로세서에서의 타자 방식 과 유사하도록 하여 모든 사람들이 쉽게 타자를 칠 수 있도 록 하였다．이를 위해 기존의 자판과는 달리 자음 19 자，모음 21 자 모두 자판에 골고루 배치하는 것을 기본으로 하였다．따 라서 하나의 자퐌에 자음은 2 개，모음은 최대 4 개까지 배치하 였다．그러나 휴대폰과 같이 자판이 작은 경우에는 모음을 최 대 2 개까지만 표기하여 자판이 복잡혜지는 것을 보완할 수 있다．이 경우에도 생략된 복모음을 쉽게 추정할 수 있어，타 자 방식에는 큰 어려움을 초래하지 않는다．

둘째，전화번호에 대웅하는 한국어 별명을 생성할때，전화 번호에 대해 많은 한국어 별명이 생성될 수 있도록 전화 국

번에 사용되지 않는 0 과 1 에는 한국어 별명의 첫 음절에 나 타날 확률이 상대적으로 적은 자옴（0에는＇ㅈㅈ＇과＇ㄱㄱ＇， 1 에는 ＇$ᄃ$＇과＇도＇）을 배치하였다．
셋째，문자 타자시에 타건수와 운지거리를 줄이면서도 자판 을 외우기 쉽도록 구성하였다．（그림 1）과（그림 2）와 같이 대부분의 기존 전화기 한글 자판은 10 개의 자판에 대해 자음 과 모음을 골고루 배치하지 않고 자음과 모음 자판을 따로 배치함으로써 하나의 자음이나 모음을 치기 위해서는 상대 적으로 많은 자판을 눌러야 하므로 타건수가 늘어나게 된다． 따라서 이를 해결하기 위해 TELNICK 자판은＜표 3＞에서 제시한 자음과 모음의 사용 빈도 수에 따라 자음과 모음올 모든 자판에 골고루 배치하되，외우기 쉽도록 하기 위해 일 정한 규칙을 가지도록 하였다．

위의 3 가지 고려 사항을 기반으로 하여 자음은 1 번 자판 에 상대적으로 사용 빈도가 높은＇ㄱ＇을 배치하지 않기 위해， ＇ㄱㄱ에서＇ㅊㅊ’까지를 오른쪽에서 왼쪽으로 먼저 배치한 후，전 화번호에 대응하는 한국어 별명을 많이 생성하도록 자음의 사용 빈도 수를 고려하여＇ㄴ＇과＇표＇，＇口ㅁㄱㅘ＇E＇，＇ㅈㅈ＇과＇न＇， ＇ e ＇과＇ㅎ＇을 같은 자판에 배치하였다．특히＇ E ＇은 두음법칙 에 때문에 단어의 첫 글자에 많이 사용되지 않으므로 첫 글 자예 사용 빈도 수가 높은＇허＇을 같은 자판에 배치하였다． 또한＇ 0 ＇은 사용 빈도 수가 자음 중에서 가장 높아 다른 자 음을 함께 배치하지 않았다．

모음은 외우기 쉽도록 오른쪽에서 왼쪽의 순서로 1 번 자
 배치하였다．＂F ，ㅋㄱ，고，$\pi, 一 "$ 는 상대적으로 사용 빈도수가 ＂ㅏ， $1, \perp, T, 1$＂보다 적어 복모음과 함깨 자판에 배치하되， 이들의 순서 또한 사용 빈도 수에 의거하여 배치함으로써 타건수를 줄일 수 있도록 하였다．즉，$(H, F, H),(\exists, H$,
 에 배치하였다．모음 중＇ㄴ＇는＇기＇보다 사용 빈도 수가 낮으 나，모음의 대표성을 고려하여＇기＇보다 앞에 배치하였다．
이러한 자음과 모음의 배치는 자동적으로 사용 빈도수가 높은 자음과 사용 빈도수가 낮은 모음이 한 자판에 배당되 어，전체적인 자음과 모음의 빈도수는 자판마다 어느 정도 균형을 이루게 되었다．이는 한국어 뼐명올 생성하는데 상당 히 중요한 영향을 미치게 된다．

2．3 TELNICK 자판 사용법

TELNICK 자판은 컴퓨터의 워드프로세서에서 타자를 치 는 것과 유사한 방법으로 타자를 칠 수 있도록 설계되었다． ＇ 7 ＇은 1 ，＇ 77 ＇은 1 을 두 번 누르면 된다．그리고 한 글자를 타자친 후，연속된 다음 글자를 치기 위해＇\＃＇를 누를 필요가 없이 다음 글자를 바로 치면 된다．즉，워드프로세서에서의 타자 방식과 같이 자동젹으로 자음과 모음이 번갈아 나오게

된다．예를 들어＂우리＂라는 단어를 치기 위해서는 8760 을 차 례로 누르면＂○＂，＂우＂，＂울＂，＂우리＂의 순서로 글자가 완성 된다．그러나 워드프로세서와는 달리 하나의 자판에 여러 개 의 자음과 모음이 있으므로，하나의 자판에 있는 다른 자음 이나 모음을 치기 위해서는 특수 키를 필요로 한다．예를 들 어，＂다＂를 칠 경우＇ㄷ＇과＇$卜$＇가 둘 다 1 번 자판에 있으므로 ＜자모변환＞키를，＂학교＂와 같이 연속된 두 글자에서 앞 글 자의 종성과 뒷 글자의 초성이 같은 자판에 있는 경우는 부 득불 글자를 강제로 구분하도록 글자 완성키인＇\＃＇키를 사 용한다．

다음은 본 자판을 사용하여 타자를 칠 경우와 문자 생성을 위해 필요한 3 개의 특수 키에 대한 설명이다．
（1）＇\＃＇키 ：글자 완성키 및 공백（space）키
＇\＃＇키를 한 번 누르면 글자 완성키로，두 번 누르면 공백 키로 동작하며，＂학교＂의 예와 같이 연속된 글자에서 앞 글 자의 종성이 있는 경우，앞 글자를 분리하기 위해 사용한다．

예）＂학교 갈께＂$\Rightarrow 6613 \# 366 \# 316 \# 3344$
예）＂너 사랑해＂$\Rightarrow 23$ 91618\＃662
（2）＊자판의 〈자모＞키 ：자음과 모음의 변한 키
＂다＂의 예와 같이 한 음절 내에서 초성과 중성이 같은 자 판을 사용할 경우에 사용한다．

즉，같은 자판의 자모를 구분하기 위해 사용된다．
에）＂다＂$\Rightarrow 1 * 1$ ，＂꺼＂$\Rightarrow 33 * 1$
한글 타자 시에는 종성 다음에 모음이 오면 자동적으로 종성이 초성으로 변한다．

단，복자음 받침은 두 번째가 자음이므로 반드시 자모 변 환키（＊）를 사용하여야 한다．

예）＂우리＂： $8760(0 \Rightarrow$ 우 \Rightarrow 울 \Rightarrow 우리）
＂읽다＂：806＊3\＃1＊1 $0 \Rightarrow$ 이 \Rightarrow 일 \Rightarrow 읽 \Rightarrow 읽ㄷㄷ \Rightarrow 읽다）
＂이러다＂：80631＊1（ $0 \Rightarrow$ 이 \Rightarrow 일 \Rightarrow 이러 \Rightarrow 이럳 \Rightarrow 이 러다）
（3） 0 자퐌의＇b＇키 ：blank 키（무받침 키）
＇b＇키는 전화번호에 대응하는 한국어 별명 생성시에 반침 이 없는 종성을 표시하기 위해 사용하며，한글 타자시에는 사 용하지 않는다．

예） $250 \Rightarrow$ 노

2.4 타건수와 운지거리 분석

TELNICK 자판과 기존의 전화기 한글 자판과의 비교를 위 해，국민교육헌장 336 음절에 대한 한 글자당 평균 타건수와 운지거리를 구하여 제시한다．그러나，기존의 전화기 한글 자 판들은 타건수와 운지거리에 가장 큰 영향올 미치는 한 글자 의 완성에 있어 서로 다른 입력 규칙이 적용되고 있다．LG， SK，양기호 자판은 일반 워드프로세서의 한글 입력에서와 같

이 글자 완성키률 사용하지 않고도 자동적으로 한 글자가 완 성되며，삼성 천지인 자판과 현대 자판은 글자 완성키＇－＞＇ 와 $2 \sim 5$ 초를 기다리면 자동으로 한 글자가 완성되는 2 가지 방식 모두 사용한다．한화 자판은＇－＞’와 같은 글자 완성키 를 반드시 입력하여야만 한 글자가 완성된다．모든 자퐌은 삼 성 천지인 자퐌과 같이 $2 \sim 3$ 초 후의 글자 완성이 가능하기 때문에 기존 자판간의 정확한 비교 분석을 위해，본 연구애 서는 ‘－＞’와 같은 글자 완성키를 사용하는 경우와 사용하지 않는 경우로 분리하여 평균 타건수와 운지거리를 프로그램 을 통하여 조사하고，이를 분석하였다．그리고 어절 분리률 위한 공백 문자는 타건수와 운지거리 계산에서 제외하였다． 운지거리 계산을 위해 좌우 상하 관계에 있는 버튼들 간의 운 지거리는 1 로 하고，대각선에 있는 버튼의 운지거리는 피타 고라스의 정리에 의해 계산한다．그리고 $4, \nabla$ ，버튼은 $1,2,3$ 버튼 바로 위에 있다고 가정하며，∇ 버튼과 2 버튼 의 운지거리는 1 로 계산한다．
＜표 $4>$ 는 글자 분리를 위해 글자 완성키를 강제적으로 사용했올 경우의 각 자판에 대한 실험 결과이다．평균 타건 수는 TELNICK 자판이 3.12 로 가장 적었고，한화 자푠이 5.61 로 가장 많았다．평균 운지거리는 TELNICK 자판이 5.48 로 가장 적었고，양기호 자판이 8.19 로 가장 많았다．TELNICK 자판은 기존의 전화기 한글 자판보다 평균 타건수는 $8-80 \%$ ， 평균 운지거리는 $15 \sim 50 \%$ 정도 적은 것으로 나타났다．분석 결과，한화 자판，양기호 자판，삼성 천지인 자판과 같이 자 음과 모음올 따로 분리하고 있는 자판의 타건수가 상대적으 로 높게 나타났고，이에 따라 운지거리 또한 자동적으로 늘 어낪음을 알 수 있다．그러나 한화 자판의 경우는 특이하게 도 타건수는 가장 많으나，운지거리는 현대나 양기호 자판보 다 적게 나타났다．그 이유는 같은 자리의 자판을 여러 번 눌러서 자음과 모음을 표현하므로 타전수는 높으나 같은 버 튼을 누르면 운지거리는 0 으로 한다는 전제 조건에 따라 운 지거리는 타건수에 비해 상대적으로 적은 것으로 분석되었 다．
＜표 5＞는 2～3초 후에 자동으로 한 글자가 완성된다는 가 정하에 글자 완성키를 사용하지 않은 경우의 실험 결과이다． 이 경우에서는 현대 자판이 평균 타건수 2.72 와 운지거리 4．46으로 가장 우수한 것으로 나타났다．또한 TELNICK 자 판의 평균 타건수는 2.79 로 현대 자판보다는 조금 높게 나타 났으나，기존의 전화기 한글 자판보다 $20 \sim 80 \%$ 정도 적게 나 타낫다．평균 운지거리는 4.46 으로 현대 자판과 같았으며，기 존 자판보다 7～80\％정도 적은 것으로 나타났다． LG, SK ，양 기호 자판은 글자 완성키 사용 여부와 관계없이 같은 값을 가지는 것으로 나타넜다．이것은 LG, SK ，양기호 자딴이 컴 퓨터 한글 자판과 같이 연속된 글자들을 글자 완성키를 사

용하지 않고 완벽히 글자률 분리하고 있음을 의미한다．현대 자푠의 경우는 2.1 절에서 언급한 바와 같이 연속된 같은 숫 자를 눌러야 하는 경우，강제적으로 글자률 선택해야 하나， 본 실험의 대상 문서인 국민교육헌장에서는 이러한 글자가 나타나지 않았다．
만약 본 TELNICK 자판을 타건수와 운지거리만을 고려하 여 한 자판 당 최대 2 개의 모음을 배치한다면，위의 결과보 다 타건수나 운지거리는 조금 더 줄일 수 있다．그러나 전화 번호에 대옹하는 더 많은 한국어 별명의 생성을 고려하여 그렇게 배치하지 않았다．

〈표 4〉글자 완성키뷸 사용한 경우의 평균 타건수 및 운지거리 비교

자팬명（회사명）	평 균 타건수	타건수 감소비욜	평 균 운지거리	운지거리 감소비율
TELNICK 자표	$\mathbf{3 . 1 2}$	$\mathbf{0 \%}$	$\mathbf{5 . 4 8}$	$\mathbf{0 \%}$
LG 사이언	3.37	8%	6.40	16.8%
현대	3.37	8%	6.96	26.8%
SK	3.74	19.9%	7.94	44.9%
양기호	3.88	24.4%	8.19	49.5%
삼성천지인	3.94	26.3%	6.61	20.6%
한화	5.61	79.8%	6.72	22.6%

〈표 5〉굴자 완성킬⿱⿱一口䒑日十 사용하지 않은 경우의 평균 타건수 및 운지 거리 비교

자팬명（회사명）	평 균 타건수	타건수 감소비율	평 균 운지거리	운지거리 감소비을
TELNICK 자푠	$\mathbf{2 . 7 9}$	$\mathbf{0 \%}$	$\mathbf{4 . 4 6}$	0%
현 대	2.72	-2.5%	4.46	0%
LG 사이언	3.37	20.8%	6.40	43.5%
SK	3.74	34.1%	7.94	78.0%
삼성 천지인	3.875	38.9%	6.19	38.8%
양기호	3.88	39.1%	8.19	83.6%
한 화	4.96	77.8%	4.76	6.7%

3．한국어 볍명 생성

통신 수단이 엄청나게 발전한 지금，대부분의 사람들은 $2 \sim 3$ 개의 전화번호를 가지고 있어 개인마다 기억해야 할 전화번 호의 수가 굥장히 늘어나고 있다．따라서 전화번호를 쉽게 기 억할 수 있는 효율적인 한국어 별명 생성 방법이 절실히 필 요하다［2］．회사，기업，점포나 상점은 상호명과 유사한 별명 을，개인，특히 영업을 하는 사람들은 자기 이름이나 영업 목 적에 맞는 한국어 별명을 전화번호로 가진다면 주변의 사람 들이 셥게 전화번호률 기억할 수 있어 엄청난 영업 효과를 가 질 수 있올 것이다．따라서 전화번호 Nickname（한국어 녈 명）의 영향을 에측하고，이러한 전화번호에 대웅하는 한국어

〈표 6〉 전화번호에 대옹하는 한국어 뼐명 생성 방법

글자수	국 번		4 자리 번호
	3자리 국번	4자리 국번	
1 글자	$\begin{aligned} & \text { 초성 + 중성 + 종성 } \\ & \text { 왕(868), 김(305), 삶(916), 노(250) } \end{aligned}$	X	X
2 글자	5 초성 + 초성 + 중성 사랑(ㅅ, ㄹ, ㄱ:961), 학교(ㅎㅎ, ㄱ,쓰: 636)	X	$\begin{aligned} & \text { 초성 }+ \text { 중성 }+ \text { 초성 }+ \text { 중성 } \\ & \text { 사랑 }(\text { ㅅ, }, \text {, 르, ㄱ: } 9161) \text {, 학교 }(ㅎ, ᅡ, ㄱ, ㅆ ㅛ: 6136) \end{aligned}$
3 글자	${ }^{50} \operatorname{mir}^{2}$ 초성 + 초성 + 초성 사랑혀(ㅅ,ㄹ, ㅎ: 966), 언제나(ㅇ, ㅈ,ㄴ:872)	X	0 초성 + 초성 + 초성 + 중성
4 글자	X	오른쪽 4자리 번호와 동일하게 사용	초성 + 초성 + 초성 + 초성 사랑해요(ㅅ,ㄹ, ㅎ,ㅇ:9668), 동성동본(ㄷ,ㅅ,ㄷ,ㅂ:1914)
4 글자 이상	X	오른쪽 4자리 번호와 동일하게 사용	앞의 4글자의 초성만 사용 r 초성 + 초성 + 초성 + 초성 오실로스쿄프 (ㅇ,ㅅ,ㄹㄹ,소 : 8969), 데이터베이스(ㄷ, ㅇ,ㅌ,ㅂㅂ:1854)

별몀을 효율적으로 생성하게 해주는 시스탬의 개발은 사용 자에게 많은 편리함을 가져다 줄 것이다.

3.1 전화번호에 대응하는 한국어 별명 생성 방안

전화번호와 한국어 별명을 대웅시키는 기존의 방법은 "빨 리빨리"와 같이 4 글자의 초성만 숫자에 대응하는 것이다[2]. 그러나 글자의 초성만을 이용하는 이 방법으로는 10,000 개의 전화번호에 대응하는 많은 한국어 별명을 생성할 수가 없기 때문에, 모든 한국어 별명올 숫자에 대웅할 수 있도록 모음 을 사용하는 방법을 <표 6 >에서 제안한다. 방법을 단순화하 기 위해 모음(중성)은 단어의 마지막 글자의 모음만을 사용 하되, 2 글자를 4 자리 번호에 대웅할때만 2 글자 모두 모음을 사용한다. 또한 받침(종성)은 1 글자 단어에만 사용하며, 'ㄹา' 과 같은 복자음은 앞 자음 'ㄹ'만 사용한다. <표 6>에서 X 는 사용할 수 없음을 의미한다.
<표 6>에서 한 글자 별명은 3 자리 번호에만 대웅되며, 초 성, 중성, 종성을 TELNICK 자판에서 찾아 그 자판의 숫자 를 생성한다. 전화번호는 국번과 4 자리 번호로 나뉘어진다. 국번의 경우, 3 자리 국번의 숫자는 3 글자 이하의 별명만을 생성하며, 4 자리 국번의 숫자는 4 글자 이상의 별명만을 생성 한다. 4 자리 번호는 2 글자 이상을 가지는 모든 별명을 생성 할 수 있다.
모음을 사용하는 또 다른 한 방법으로 단어의 첫 글자의 모음울 사용할 수 있다. 그러나 이 방법은 모음의 어미 변화 가 일어난 별명이 모두 같은 번호를 가진다. 예를 들면, "얄 미운", "얄미워"와 같은 단어는 첫 글자의 모음을 사용할 경 우 모두 같은 번호를 가지게 되지만, 마지막 글자의 모음올 사용할 경우는 모두 다른 번호에 대웅된다. 따라서 첫 글자 의 모음을 사용하는 방법이 마지막 글자의 모음을 사용하는 방법보다 더 적은 한국어 별명을 생성하게 되며, 3.2 절의 국 번과 4 자리 번호 통합시의 많은 별명을 생성하기 위하여 본 연구에서는 마지막 글자의 모음을 사용하는 방법을 채택하

였다.

3.2 국번과 4자리 번호률 뽕합한 볓명 생성 방법

전화번호의 국번과 4 자리 번호를 통합하여 단어를 생성하 는 시스템은 지금까지 개발된 적이 없다. 본 연구는 이러한 시스템의 개발을 위하여 아래와 같은 국번과 전화번호를 통 합한 7자리 혹은 8자리 숫자에 대한 한국어 별명을 생성하 는 방법으로 한국어의 품사에 조사나 어미를 이용한 형태 분 류를 아래와 같이 제시한다.
(1) 용언 + 쳬언 형톄 : 용언 + 어미 + 체언,
용언 + 어미 + 체언 + 조사

예) 미운-오리새끼(587-8693), 얄미운-사람(858-9161), 미워도-다시한번(581-1964), 가자_팔강으로(371-2386)
(2) 용언 + 용언 형테 : 용언 + 어미 + 용언 + 어미

예) 미워-미워(588-5088), 먹어도-좋으련만(581-7865), 먹고-싶어(535-9083), 보고-또보고(435-1435)
(3) 쳬언 + 쳬언 형뎨 : 체언 + 체언, 체언 + 조사 + 체언,
체언 + 조사 + 체언 + 조사

에) 왕-초보(868-0545), 남북-전쟁(247-7372), 인터넷-써비스(852-9499), 눈물의-씨앗(258-9081), 나부터-실천을(245-9089)
(4) 쳬언 + 용언 형톄 : 체언 + 용언 + 어미,
체언 + 조사 + 용언 + 어미

에) 신문-읽자(957-8071), 나-이뻐(210-8043), 학교에-가다(638-3111), 사랑만은-않젰어요(9658-8388)
(5) 부사 + 용언 형톄 : 부사 + 용언 + 어미

예) 언제나-사고싶어 $(872-9398)$, 빨리-먹어 $(460-5383)$
(6) 감탄사 +8 용언 형테 : 감탄사 + 용언 + 어미

예) 얼씨구-줗구나(893-7321), 오호-퉁재라(865-5761)
(7) 기타 형뎨 (복합 품사)

예) 두만강-푸른물에(153-2658),

이러한 7 가지 형태의 말뭉치 조사를 위해 본 연구애서는 2 가지 방법을 적용하였다．첫째는 웹 상의 한국어 문서에서 이러한 형태의 별명을 찾아 이를 7자리 혹은 8자리 숫자로 변환하고 이를 각 번호에 대한 자료로 저장한다．둘째는 27 만 한국어 단어 중에서 1 글자 명사와 동사에는 3 글자 이하 의 조사와 어미를， 2 글자 명사와 동사에는 2 글자 이하의 조 사와 어미를， 3 글자 명사와 동사에는 1 글자의 조사와 어미률 붙여 3 자리와 4 자리 번호에 해당하는 별명 자료로 저장한 후，수작업으로 국번과 전화번호를 통합한 번호에 대한 별명 을 생성한다．

이러한 국번과 4 자리 전화번호의 통합 작업은 궁극적으 로 국번 $\times 4$ 자리 번호인 10000×10000 의 경우를 고려해야 하 므로 많은 매모리와 참조 문제가 발생하게 된다．전화번호에 대한 한국어 별명 생성 시스템은 10000×10000 의 경우에 대 해 얼마만큼의 많은 단어를 생성할 수 있느나가 관전이 된 다．이는 상당한 시간과 노력을 필요로 하는 작업이며，얼마 나 많은 말몽치률 수집하느냐가 시스템의 질을 좌우하게 된다．

3.3 자판에 따룐 생성 별명 개수 분석

아래（그림 6）（a）～（그림 6）（d）까지의 자판은 TELNICK 자 판을 기본으로 하여 모음의 배치는 그대로 두고 자음의 배치 만을 변화시킨 자판이다．

$\frac{1}{c}$	2	$\begin{aligned} & 3 \\ & 7 \pi \end{aligned}$
$\begin{aligned} & 4 \\ & 2 \div \end{aligned}$	$\begin{aligned} & 5 \\ & \text { 口E } \end{aligned}$	$\begin{aligned} & 6 \\ & \text { H明 } \end{aligned}$
$\begin{aligned} & 7 \\ & \text { 天 } \times x \end{aligned}$	8	$\begin{aligned} & 9 \\ & \text { 쏘 } \end{aligned}$
<차모>	$\begin{aligned} & 0 \\ & \star \Rightarrow \\ & \hline \end{aligned}$	<矛叫〉

（a）

$\begin{gathered} \mathbf{1} \\ ᄃ ᄃ 区 \end{gathered}$	$\begin{aligned} & 2 \\ & L E \end{aligned}$	$\begin{aligned} & 3 \\ & 7 \pi \end{aligned}$
4	$\begin{gathered} 5 \\ \text { ㅁㅍ } \end{gathered}$	$\begin{aligned} & 6 \\ & \text { ᄅ } \end{aligned}$
$\begin{aligned} & 7 \\ & \text { तxx } \end{aligned}$	$\begin{gathered} 8 \\ 0 \end{gathered}$	9
$\begin{gathered} * \\ \text { <자모> } \end{gathered}$		$\begin{gathered} \text { \# } \\ \text { <妾道〉 } \end{gathered}$

（c）

1	${ }^{2}$	$\stackrel{3}{\text { ® }}$ ¢
$\begin{aligned} & 4 \\ & \text { 2б } \end{aligned}$	5	$\begin{aligned} & 6 \\ & \boldsymbol{y} \text { 볌 } \end{aligned}$
77	${ }_{2}^{8}$	$\stackrel{9}{\text { ¢¢ }}$
<차모>	$\stackrel{\text { 0 }}{\text { ジア }}$	$\left\langle\begin{array}{c} \# \\ \text { \# } \end{array}\right.$

（b）

$\begin{aligned} & 1 \\ & 7 \pi \end{aligned}$	$\begin{aligned} & 2 \\ & \text { ᄂ파 } \end{aligned}$	$\begin{aligned} & \hline 3 \\ & c \times x \end{aligned}$
$\begin{aligned} & 4 \\ & \text { ᄅб } \end{aligned}$	$\begin{aligned} & 5 \\ & \square E \end{aligned}$	$\begin{aligned} & 6 \\ & \text { 보뼁 } \end{aligned}$
$\begin{aligned} & 7 \\ & \text { 손 } \end{aligned}$	$\begin{gathered} 8 \\ 0 \end{gathered}$	$\begin{aligned} & 9 \\ & \text { 조증 } \end{aligned}$
<자모>		$\begin{gathered} \text { \# } \\ \text { <공 } \end{gathered}$

（d）
（그림 6）TELNICK 자판에서 자음의 위치률 변화시킨 자판

위의 4가지 자판과 TELNICK 자판과의 생성 별명의 개 수 관계를 27 만 한국어 단어에 대해 조사한 결과는＜표 6＞ 와 같다．

〈표 6〉 TELNICK 자판과（그림 6）자판과의 생성 별명 개수 비교

자 푠 생성별명 수	（그립 6） （a）	（그립 6） （b）	$\underset{\text { (c) }}{\substack{\text { 그림 } 6) \\ \hline}}$	（그림 6） （d）	TELNICK
cnt 0	156	194	71	173	69
cnt 1	205	252	147	246	106
cnt 2	235	281	214	243	179
cnt 3	256	288	267	265	240
cnt 4	283	287	285	297	265
합 계	1135	1302	984	1224	859

주）cnt $0: 1$ 개의 별명도 생성하지 못현 번호의 수
cnt $1: 1$ 개의 텰명만 생성한 번호의 수
cnt $2: 2$ 개의 별명만 생성한 번호의 수
cnt $3: 3$ 개의 별명만 생성한 번호의 수
cnt 4 ： 4 개의 별명만 생성한 번호의 수
＜표 6＞은 자판의 배치가 달라짐에 따라 생성 가능한 별명 의 수도 달라짐올 보였다．＜표 6＞의 결과 TELNICK 자판 이 다른 자판에 비해 생성하지 못하는 뼐명의 수가 가장 적 옴을 나타낸다．TELNICK 자판의 경우 27 만 한국어 단어에 대해 한 개의 뼐명도 생성하지 못하는 번호가 10000 개 중 69 개， 4 개이하의 별명만올 생성하는 번호의 수는 10000 개 중 859 개로 나타났다．따라서 27 만 단어로는 10000 개의 번호에 대해 많은 한국어 별명을 골고루 생성하지 못하는 것으로 나타나 더 많은 말뭉치의 수집이 요구되고 있다．
3.4 생성 벌명 개수에 따른 전화번호와 별명의 관계 분석 이미 개발한 TELNICK 자판울 사용하여 0～9999까지 10000 개의 번호에 대한 별명 생성 수를 27 만 한국어 단어에 대해 조사한 결과는＜표 $6>$ 에서 제시되었다．
＜표 7＞은 TELNICK 자판에서 4개 이하의 한국어 별명 이 생성된 번호를 100 자리 이하의 3 자리 번호를 가지고 분 석한 결과이다．

〈표 7〉4개 이하의 한국어 범명을 생성한 3 자리 번호

단 위	전화번호의 뒤 3자리 번호 ：번호의 개수						
0～99	001 ： 5	002：7	004：6	006：10	007：5	008：8	010：5
	014：9	017：5	026：5	027：5	040：5	046：5	049：8
100～199	106：10	110：5	114：6	123：7	149：7		
200～299	202：6	206：7	207：5	208：6	210：7	214：10	217：6
	226 ： 5	246：6	249：8	258：5	294：5		
300－399	306：5	$310: 8$	$314: 9$	$349: 7$			
400－499	406： 6	410： 6	414：8	417：8	423：5	$426: 5$	428：5
	$449: 9$						
500－599	514：7	$549: 7$					
600～699							
700～799	706：8	$710: 5$	$714: 8$	$749: 8$			
800～899	807：5	810：6					
900～999	910：7	914：6	917：6	949：6			

＜표 7＞의 분석 결과 4자리 번호에서 끝 3자리가 006， 106 과 214 로 끝나는 10 개의 번호 모두가 4 개 이하의 한국어 별 명을 생성하는 것으로 나타났다．이를 좀 더 정확허 분석하 기 위해 다시 끝 2 자리 번호를 가지고 4 개 이하의 한국어 별 명을 생성한 번호를 분석한 결과를＜표 8 ＞에서 제시한다．

〈표 8〉4개 이하의 한국어 별명욜 생성한 2자리 번호

전화번호 뒤 2자리 번호：번호의 개수						
$01: 11$	$02: 25$	$03: 10$	$04: 27$	$05: 17$	$06: 56$	$07: 37$
$08: 39$	$09: 10$	$10: 56$	$14: 69$	$17: 31$	$23: 28$	$24: 10$
$26: 27$	$27: 15$	$28: 23$	$40: 13$	$42: 14$	$46: 25$	$48: 18$
$49: 64$	$52: 11$	$53: 14$	$58: 26$	$59: 10$	$94: 20$	$96: 13$

＜표 8＞의 분석 결과，생성되지 않는 별명의 수가 많은 번 호는 $14,49,06,10,08,07$ 등의 순으로 나타났다．특히 전 화번호 뒤 2 자리가 14 인 경우는 0014 에서 9914 까지 충 100 개의 번호중 69 개가 4 개 이하의 단어를 생성하는 번호로 조 사되었다．이들 번호에 대한 별명을 분석하면， 14 는＂～두부＂ 로 끝나는 별명과 같이＂ㄷ＂과＂ㅂ＂의 자음으로 생성되는 별명임을 알 수 있고， 49 인 경우의 별명은＂～박사＂，＂～버 스＂，＂～보스＂와 같이＂ㅂ＂과＂ㅅ＂의 자음으로 생성되는 별 명임을 알 수 있다．그리고 06 인 경우는＂～처럼＂，＂～초롱＂， ＂一차림＂과 같이＂天＂과＂ㄹ＂의 자음으로 연결되는 별명임 을， 10 인 경우는＂～단추＂，＂단층＂과 같이＂ㄷ＂과＂추＂의 자 음으로 연결되는 별명임을 알 수 있다．또한 08 인 경우는 ＂～차원＂，＂차이＂와 같이＂ㅊ＂과＂ㅇ＂의 자음으로 연결되는 별명이고， 07 인 경우는＂～차장＂과 같이＂추＂과＂주＂의 자음 으로 연결되는 별명임을 알 수 있다．따라서 이러한 분석 결 과를 바탕으로 분석한 유형의 복합명사나 말뭉치를 집중 조 사하고 추가함으로써 많이 생성되지 않은 번호를 감소시킬 수 있다．

4．결 론

전화번호에 대웅하는 한국어 별명을 사용하는 기존의 방법 은 2424 （이사이사）， 8254 （빨리오소）， 4989 （사구팔구）와 같이 4 글자 단어의 초성을 이용하여 숫자의 이름과 관련된 단어 를 사용하는 것이었다．그러나 이러한 방법으로 사용할 수 있는 전화번호는 그리 많지 않으며，일반 전화번호에 대해 이 러한 이름을 붙인다는 것은 거의 불가능하다．따라서 본 연 구는 한국어의 모든 단어를 사용하여 전화번호를 쉅게 기억 할 수 있도록 전화번호예 대웅하는 한국어 별명（Nickname） 의 생성 방법과 이를 구현하기 위해 필요한 전화기 한글 자

판을 제안하였다．또한 전화 국번과 4자리 전화번호를 통합 하여 한국어 별명을 생성하기 위한 한국어의 형태 분류를 제시하였다．

본 연구에서 개발한 전화기 한글 자판은 기존의 전화기 한 글 자판이 가지고 있던 문제점이었던 자판의 단순성，타건수 및 운지거리 감소，쉬운 타자 방식，자판의 쉬운 암기，전화 번호의 쉬운 암기를 위한 많은 한국어 별명의 생성 등을 모두 해결하였다．특히 글자당 평균 타건수와 운지거리는 기존의 전 화기 한글 자퐌에 비해 본 연구에서 개발한 TELNICK 자판 이 가장 우수한 것으로 입증되었다．글자당 평균 타건수는 글자 완성키를 사용하지 않은 경우가 2.79 ，사용한 경우가 3.12 로 기존의 전화기 한글 자판에 비해 $8 \sim 80 \%$ 정도 감소 하였다．평균 운지거리는 글자 완성키를 사용하지 않은 경우 가 5.25 ，사용한 경우가 6.27 로 기존의 전화기 한글 자판에 비해 7～80\％정도 감소하였다．

앞으로 상호명，고유명사，은어 등의 추가 자료의 입력과 전화 국번과 4 자리 번호를 퉁합한 번호에 대한 많은 한국어 별명의 출력 결과를 생성하는 시스템이 개발되면，많은 사람 들에게 편리함을 가져다 줄수 있을 젓이다．또한 국번과 4자 리 번호를 통합한 결과 자료는 한국어 정보처리의 수식어구 분석욜 위한 태그 정보와 의미 정보에 보다 효율적으로 사 용될 수 있을 것이다．

참 고 문 헌

［1］홍기호，한글 자모 배열 전화기 자판，대한민국 톡허청 공개 실용 신안 공보， 1998.
［2］허태호，한글 고유 코드률 만들 수 있는 한글 입력용 전화기 자판，대한민국 특허첨 공개 실용 신안 공보， 1999.
［3］구민모，이만영，＂전화기 자판의 한글 입력 효월성 평가 모형＂， 정보처리학회논문지D 제8권 제3호，pp．295－304， 2001.
［4］정승훈，박진우，이일병，＂컴퓨터 모의 실험에 의한 자판 배열 의 성능 평가＂，제3희 한글 및 한국어 정보처리학술발표논문 집， 1991.
［5］정희성，＂컴퓨터 시뮬레이션에 의한 최적화 한글 자판 설계와 평가＂，한국 통일 표준 자판 마련을 위한 연구 발표 및 토론희， 1997.
［6］쳐재혁，＂형태소 분석을 퉁한 한영 자동 색인어 추출 시스템＂， 정보과학회논문지 제 23 권 제 12 호， 1996.
［7］최재혁，＂양방향 최장일치법에 의한 한국어 형태소 분석기에 서의 사전 검색 감소 방안＂，정보과학희논문지 제 20 권 제 10 호， 1993.
［8］최재혁，＂음절 수률 이용한 한국어 복합명사 분리 방안＂，제8 회 한글 및 한국어 정보처리학회논문집， 1996.

최 재 혁

e-mail : jhchoi@silla.ackr
1984년 경북대학교 전자공학과 컴퓨터 공학전공 공학사
1986년 경북대학교 전자공학과 컴퓨터 공학전공 공학석사
1994년 경북대학교 전자공학과 컴퓨터 공확전공 공학박사
1989년~1994년 신라대학교 전자계산학과 조교수
1995년 ~현재 신라대학교 컴퓨터교육과 교수
1999년 ~2000년 미국 UCI(University of California, Irvine) 방문 교수
관심분야 : 한국어정보처리, 컴퓨터교육

정 재 열

e-mail : jychung@silla.ac.kr 1989 년 계명대학교 전자계산학과 학사 1991년 계명대학교 전자계산학과 석사 1991년~1994년 한국전자퉁신연구소 선임 연구원
1997년 경북대학교 컴퓨터궁학과 박사 1997년~현제 신라대학교 컴퓨터교육과 조교수 관심분야: 컴퓨터교육, 정보풍신

[^0]: 이 논문은 2001 년도 신라대학교 교내 연구비 지원에 의해 연구되었음.
 \dagger 종신회원 : 신라대학교 컴퓨터교육과 교수
 $\dagger \dagger$ 정 획 원: 신라대학교 컴퓨터교육과 교수
 논문접수 : 2002년 8월 2일, 심사완료 : 2002년 10월 1일

