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Semantic Aspects of Negation as Schema
Kang Soo Tae'

ABSTRACT

A fundamental problem in building an intelligent agent is that an agent does not understand the meaning of its perception or its action. One
reason that an agent cannot understand the world is partially caused by a syntactic approach that converts a semantic feature into a simple
string. To solve this problem, Cohen introduces a semantic approach that an agent autonomously learns a meaningful representation of physical
schemas, on which some advanced conceptual structures are built, from physically interacting with environment using its own sensors and
effectors. However, Cohen does not deal with a meta level of conceptual primitive that makes recognizing a schema possible. We propose that

negation is a meta schema that enables an agent to recognize a physical schema. We prove some semantic aspects of negation.

FI9E : 7| A& & (Machine Learning), M8 (Planning), XAlES (Knowledge Representation), XIAl&®(Know Acquisition)

1. Introduction

One of the goals of artificial intelligence is to understand
the nature of intelligence and to build systems that exhibit
intelligence[4, 13]. A practical problem in attempting to build
a truely intelligent system is that an agent does not under-
stand the meaning of its perception or its action[4-6, 16, 17].

In this paper, we first introduce a syntactic approach to
knowledge representation that converts semantic features
of the objects in the world into syntactic strings. This par-
tially explains why the systems cannot understand the world.
Even though we should admit that the syntactic represen-
tation of logical inference is very useful when an agent
does not understand the world except what is stored in its
knowledge base, it is a fundamental weakness of the tra-
ditional knowledge representation approach. The issue is
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how to connect an agent’s knowledge representation to
meaning rather than to syntactic strings.

To deal with the issue, Cohen suggests a semantical ap-
proach that an agent can learn representation directly from
interacting with environment using its sensor, motor and
language. This approach basically assumes physical sche-
mas as conceptual primitives. Furthermore, he claims that
an agent can learn these primitives on its own without
human intervention : The agent senses its environment
through a collection of sensory streams coming directly from
its own sensor rather than through the simulated strings
given by a human. Sensation is a meaningful token in a
stream. Fluents are states with duration[11]. Cohen claims
that fluents are the locus for knowledge, where smallest
fluents are just copies of its sensations and complex fu-
lents made of corelated fluents become an abstract entity.
A set of fluents can be used to define a class such as a
graspable object. While this type of conceptual knowledge
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is specific to an agent’s capabilities, a physical schema is
a more general kind of fluent that represents objects or
classes across domains. The physical schemas are central
to the development of a cognitive agent, forming building
blocks for further abstract categories

Finally, we propose that there should be another type of
conceptual primitive that enables an agent to recognize a
physical schema or a class of objects against the rest of
objects in the world. This primitive, called negation, can
help an agent implicitly to recognize a partition composed
of objects not belonging to the class of interest. We will
prove that negation is a meta level of schema and we in-

vestigate some aspects of negation.

2. Problems with Syntactic Representation

A knowledge representation language is used to express
knowledge in a computer-tractable form. The syntax of
the representation language describes how to make well-
formed sentences. Simple sentences can be combined by
a connective into a complicated sentence. For example, p
A g is made by combining conjunctive connective A to
simpler sentences p and g, while ' p is made by com-
bining negative connective ' to p. In this paper, we are
interested in understanding some semantic aspects of the
negative connective. We will develop an algorithm to im-
plement this idea on a robotic agent in our next step of
research.

The semantics of the language deals with the facts in
the world. The sentences refers to the facts. The corres-
pondence between a sentence and a fact is provided by an
author’s interpretation. Conventionally, the author is lim-
ited to a human expert, but it is desirable if the author can
be an artificial agent itself. A main goal of Cohen's re-
search is to seek this possibility. The meaning of a sen-
tence is what it describes about the world. While facts are
part of the world, the representation of facts is encoded in
an agent’s mind, even though whether an artificial agent
can really possess a mind is a very hard research area re—
lated to Strong AL Note that the agent’s reasoning mech-
anism should operate on the picture or the representation
of facts, not on the facts[13, 18].

A semantic causality such that a fact must follow from
another fact is reflected by a logical rule that a sentence
is entailed by another sentence. Logical inference is a
process that implements this entailment relation between

sentences. Let p refer to a fact F, and q refer to another
fact Fy. If Fy necessarily follows from Fj, then q is en-
tailed from p. This example shows how logic connects a
syntactic representation with the world. However, the pro-
blem with this type of representation is that the agent still
does not understand the world. The correspondence between
p and Fp is not learned intrinsically by the agent, but it
was created by a human author and is extrinsically given
to an artificial agent. Rules and symbols are given as
strings and stored in the knowledge base. The agent is
only connected to the world in the mind of the creator.

Since a computer system does not know about the world
except what appears in the knowledge base, it cannot rea~
son about the world as a human does. To prove a sentence
or a goal p with little knowledge on the world, the only
possible method that the agent can adopt is to demonstrate
that knowledge base entails the sentence p. If p is -valid,
it does not matter that the agent does not know the world.
The conclusion is correct under all the world regardless
of the agent’s knowledge about the interpretation. While
the conclusion is meaningless strings to a system, it is
meaningful to a human because he or she knows the in-
terpretation.

However, the advantage of using tautology in logical
reasoning comes with its price of the exponential overhead
in search. To overcome this overhead, systems should use
some type of control rules[1]. Prodigy uses the operator
selection or rejection rules[3]. Graphplan, an offspring of
Prodigy, uses a control rule called mutex that syntactically
detects impossible structures to reduce the search space
[2]. We can observe that this syntactic rule reflects the
semantic rule that two opposite facts cannot exist in the
world simultaneously.

Another tradeoff in using the syntactical approach to
knowledge representation is that the system may suffer
from a redundancy problem. As mentioned, Graphplan uses
mutex to infer inconsistency between two operators or
predicates, but the planner does not understand negation,
and just treats a negative term as a string of characters.
If the negation of a proposition, p, is required, then Graph-
plan defines a new proposition, say not-p, which happens
to be equivalent to (not p). This kind of seemingly sim-
plistic negative notation may cause a redundancy problem
such that a state change is described by two processes,
such as add(not-in(x)) and del(in(x)), unless an agent is
equipped with a special inference knowledge recognizing



in and not-in as opposition. In order to extend Graphplan
to handle a negative fact, IPP introduces the negative func-
tion not. Since not-p is not used any more, a negative
effect can be uniformly handled as Add(not p) rather than
as {Add(not-p), Del(p)}. Thus, (not in) can be used in-
stead of (not-in) to negate a fact in a domain[9].

The agent using string representation can also suffers
from a noisy problem. Suppose that an agent’s arm is
empty in the actual world. If the agent's sensors are noisy,
the agent may internally believe that its arm is empty and
that it is also holding an object at the same time : {arm
-empty, (holding x)}. A machine with incomplete domain
knowledge cannot detect that it is an impossible state,
Note, however, that a human can infer ~ (holding x) at the
same time. Even though the process of inferring a negative
predicate from a positive predicate seems rather self-ob-
vious to a human, it can be used as crucial control knowl-
edge in a machine[16].

3. Leaming Semantic Representation by Interaction

The goal of autonomously learning and understanding
representation is extremely hard to achieve. Most Al sys-
tems manipulate representations that mean what knowl-
edge engineer intend them to mean. The meanings of re-
presentations are exogeneous to the systems. This pro-
blem is a fundamental weakness of syntactic approach for
representation. Even though the goal of understanding re-
presentation is extremely hard to achieve, the best evi-
dence of possibility of building an intelligent entity is a
human being. In efforts to build intelligent systems that
simulate human cognitive capacities, Searle distinguishes
strong Al from weak Al According to weak Al, the com-
puter gives us a very powerful tool to rigorously formulate
and test hypotheses in the study of the intelligence. But
strong Al claims that machine can be conscious, and the
appropriately programmed computer really is a mind, in
the sense that computers can be literally said to under-
stand[14]. Searle denies the possibility of strong Al How-
ever, Cohen claims that meaning can be learned by an
agent. If an agent can autonomously learn and understand
the meaning of a representation, it will save a lot of work
for human. The problems described in the previous section
is due to the fact that the agent does not understand the
representation of its perception and activities.

Cohen is interested in knowing the origin of conceptual
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knowledge, the earliest distinctions and classes. Currently
most of the intellectual work in Al is done not by pro-
grams but by humans, and the work of specifying meaning
of a representation is also mostly done by people, not pro-
grams. Searle claims that meaning can be learned only by
a brain-like machine, and cannot be learned by program.
However, Cohen claims that some kinds of meaning can
be learned by program. While the origin of concepts is
hotly debated, Cohen claims that even though babies’ minds
have some structure at birth, concepts can be learned with-
out supervision by abstracting over representation of ac-
tivities. There is converging evidence in psychology, phi-
losophy, linguistics, and robotics that human reasoning re-
lies on a set of conceptual primitives. Mandler claims that
image-schematic redescriptions of spatial structure can
produce conceptual structures from sensorimotor interac-
tions[10]. The image-schemas are pattern detectors or fil~
ters that map sensory streams onto partial representations.
These primitives are schematic structures that are grounded
in physical interaction with the world. These structures,
called physical schemas, describe basic relationships and
interactions between an agent and objects, such as moving
or pushing. Physical schemas are abstract, domain indepen-
dent descriptions that are themselves ultimately grounded
in the physical processes of moving and applying force.

Ideally, the agent should figure out what a symbol means
for itself, not given by us. That way, the robot can learn
most of what it knows. Cohen is interested in knowing
how an agent can develop its own semantic representation
by sensorimotor interaction with the world. Returning to
the problem that the agent does not understand its per-
ceptions because they are simulated by strings, Cohen
claims that the connection of an agent to the environment
should be through its own sensors. Then, the agent’s
perceptual representation can be grounded on sensors. The
agent’s direct connection to environment provides repre-
sentation with meaning. This intrinsic meaning leaned by
agent counteracts extrinsic meaning in traditional Al that
typically builds systems that do exactly what we want
them to do.

Cohen’s Baby, a robotic agent embedded in the world,
learns representations of objects, activities, and categories
using rules similar to the image schemas. When a natural
baby is born, it acts and perceives and does little else. The
representation, concept, and language must arise from ac-

tion and perception. In Cohen's approach, an agent assumes
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physical schemas as a prior structure and learns the struc-
tures based on statistical observation. Baby senses its en-
vironment through a collection of streams. Sensation is a
meaningful token in a stream. Fluents define objects or
activities by abstracting regularities in streams, and fluents
become representation stored in memory. Note that while
streams are the basis for Baby’s sensory experience, fluents
are the basis for knowledge. Smallest fluents are just
copies of its sensations and they become abstract entity
by aggregation.

First, Baby learns scopes, which are pairs of streams
that tend to change states simultaneously. By a scope, it
knows that the corresponding pair of streams is correlated.
Base fluents represent the dependencies that produce the
correlation 6f scopes. Baby learns base fluents that cor-
respond to objects in its environment, such as the red
rattle. After Baby learns some base fluents, it starts to
form context fluents. The context fluents represent the
causal relationships that exist -among events that happen
one right after the other. A set of fluents can be used to
define a class such as a graspable object. This type of
conceptual knowledge is relatively specific to an agent's
capabilities. A physical schema is a more general kind of
fluent that represents objects or classes across domains.
This schema are central to the development of a cognitive
agent, forming building blocks for further abstract cate-
gories and bridging the gap between an agent's senso-
rimotor behavior and its higher level cognitive skills. As
an example of a physical schema, the notion of contain-
ment covers many situations at varying level of abstrac-
tions, containing a block in a box, containing a sheep within
a fence, containing a thought within one’s head. The last
abstract concept is metaphorically understood by relating
it to the process of containing something within a hand[6].
Baby learns a surprising amount given only scopes, base
fluents, and context fluents.

4. Negation as Schema

The syntactic aspect of negation is simply to add a
negative connective to a predicate or a sentence. Now, we
will investigate the semantic aspect of negation in the
context of a conceptual primitive. A schema is a concep~
tual primitive which enables an agent to recognize a pat-
tern or a class of objects. Cohen considered only the physi-
cal schema that recognizes a pattern or a class through

sensorimotor activities. We will analyze the nature of ne-
gation as a type of conceptual primitive which enables an
agent to recognize a schema itself and prove some aspects
of negation.

The world reveals a great deal of regularity, instead of
being a random set of objects. Thus, an ontology, or an
organization of objects and actions into categories or
classes, is a vital part for a cognitive agent. An object is
classified based on its attributes, whether they are objec-
tive properties[12] such as color and size or interactive
properties[b] such as graspable and fit-in-my-hand. An
inductive learning program is supposed to learn a function
f(x:) = y; from data of the form (x;, yi) for all i. y; is called
classes and f assigns each x to an appropriate class. When
there are only two possible y; values, the system is called
to learn a concept, and each x; is either a positive or a
negative example of the concept. f can be viewed as a
definition of the concept(15]. From a semantical view, a
concept refers to a set of positive examples that satisfy f.
There are lot of machine learning techniques that can learn
a concept from a set of data by dividing it into two par-
titions. Note, however, that their function is mostly limited
to learning a concept for the positive data only. We say

_that the techniques learns a concept on the level of data.

For example, C4.5 can learn which days are good for play-
ing a game[l12].

Here is a question pertaining to our research : What is
the concept for the set of negative examples? Currently,
no machine learning technique seriously asks this kind of
question. For example, C4.5 does not need to learn the
concept for days which are not good for playing a game.
It is mainly because a machine learning system simply fo-
cuses on the efficiency of solving problems and it does not
need to concern about probing some relationship existing
between the positive data and the negative data. We say
that this type of system learns a concept on the meta level.
Obviously, the negated concept itself is sometimes rather
pretty simple because it refers to the set of objects that
do not belong to the class. However, to adjust to the real
world, an agent may need much more complex cognitive
ability such as recognizing a negated or opposite concept.
It is true especially in the area of natural language under-
standing because a human being tends to compare positive
and negative facts together, and furthermore represent a
negative fact by a positive predicate rather than by nega-
tion[17]. For example, we observe that an elementary stu-



dent should learn by heart the opposite concepts such as
difficult vs easy or cold vs hot, which is closely related
with the meaning of not difficult or not cold.

When an agent recognizes a class of objects as a con-
cept, it differentiate the class from the rest of objects
which do not belong to the class. It implies that the agent
partitions the world into two classes and it knows to
which class an object belongs. If an agent knows the con-
cept for an object, it implies that it also knows that certain
object does not belong to the concept. Thus, dichotomy is
the initial step toward conceptualizing the world.

Suppose the universe U of a domain is partitioned into
two sets A and B. The complement of A is the set of
elements that belong to the universe U, but do not belong
to A. B is the complement of A. Both A and B satisfy
the definition of a concept. Thus, the negation relation-
ship is actually the complement relationship because the
negation of a concept refers to a set of objects that do
not belong to the concept. If the agent knows the concept
A, it must know the concept B. The existence of B is
necessary for defining or recognizing A in any domain U.
B functions as a background. We call B the negation of
A. A cognitive agent should possess the mental ability to
know the complement relationship. Without this ability, it
is impossible to recognize a class. Therefore, the ability
to partition the world into two part is a cognitive primi-
tive. Based on this argument, we will prove some aspects
of negation.

Theorem 1 : Negation is a schema.

Proof) Suppose there is a cognitive agent. We should
prove that negation is a conceptual primitive for the agent.
As a base case for induction, suppose there exists only one
schema or class in the world for the agent’s perception. It
implies that there is no ontology for the agent, and it is
impossible for the agent to understand or reason about the
world. Therefore, there should be more than one class in
the world. When there are only two classes for the agent’s
perception, all the objects are divided into two partitions
such that one partition satisfies certain property or func-
tion while the other partition does not. Thus, the agent is
able to recognize one partition as a concept as long as it
also récognize the other partition as the negation for the
concept. Since it is impossible to recognize a class without
its negation, negation is a conceptual primitive. Thus, it is

a schema. []

8% 277|012 QUIEa 4k 27

It is impossible for an agent to reason without its on-
tology. Having one class, with no organization inside the
class, actually means that there is no class to recognize
in the world. Relativism is a basic approach in under-
standing a phenomenon. If we are sitting on a chair, we
may not know that we are moving, while a person staying
in the space outside the earth can perceive that we are
moving along with the earth. Just as we can perceive the
fact that we are moving only when we have a view point
which is not a part of the earth, we can understand a
concept only if there is another concept for comparison and
this most primitive concept is the negation of the concept.

Thus, while recognizing a class implies that it should
recognize its negation, it will be impossible to recognize
any two positive concepts at the same time. To help an
agent to recognize a concept, negation suppresses any two
concepts within the negative partition from being recog-
nized in an agent’s mind at the same time. We prove that
negation performs some kind of abstraction. First, let’s

assume as follows :

Assumption : An agent can recognize only one concept at

a time

Theorem 2 : Negation performs a mental abstraction.

Proof) A concept is basically a binary membership func-
tion asking whether an object belongs to the positive par-
tition. However, the objects that do not belong to the con-
cept can be actually heterogeneously composed of many
different classes within the negative partition. Since an
agent cannot recognize two or more concepts at a time,
any class of objects that do not belong to the concept
cannot be recognized as a concept on its own and it should
be ignored. Thus, negation is a mental operation abstract-
ing away the difference among many classes in the ne-
gative partition in order to make an agent recognize only
one concept. [ ]

If there are 4 colors composed of red, blue, green, and
white, in our ontology, and an agent’s purpose is to learn
the concept of the red color, it is irrelevant to know
whether the color of an object is white or blue, as far as
it is not red. The difference in the three other colors is
suppressed into one concept of not being red. Thus nega-
tion is abstracting process for recognition. This capacity
of making abstraction seems related with our -ability to
recognize an opposite relationship{17].
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Theorem 3 : Negation is a meta level schema.

Proof) While the schematic structures such as scopes
and fluents are grounded on sensorimotor interaction with
the world, the negation schema is not directly grounded on
physical interaction. Rather, it is a schematic structure on
which recognizing a physical schema is based. Since ne-
gation does not exist independently but its existenpe is
necessary in recognizing a schema itself, it is a meta

schema. [ ]

5. Conclusion

An agent does not understand the meaning of its per-
ception or its action partially because of the syntactical
knowledge representation. Cohen claims that a meaningful
representation can be learned from physically interacting
with environment. Cohen is only interested in learning the
physical schemas and does not deal with a meta level of
conceptual primitive that makes recognizing a schema pos-
sible. We propose that negation is a kind of meta schema.
We prove three aspects of negation.
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