3986 SRFENEIEDE =EX HMTA M122(2000.12)

ok el A 2 (WA A 7)ol A
T A AR 7] AAE A% AA

ESCRCNEIEE &

e o

o3 deigaaes e WHNE(Cl=[Alo.ofBDAA B4, F A JHEEE RE HolZAUdRFHENA A
dEnh. zZzhe Az ARge oF HEREAEAN 2459 BYAAALE JHor AdET. & drddME oF
AZA A 24 FPAAN] AAR L, FEHEZHE 2ge}t ARGE] Fo|Zekl) FHADH A A 4
Ad F A F AT 99 28 A9 so)Zd FUE HAVHE A,

On Design for Elimination of the Merging Delay Time in
the Multiple Vector Reduction (Inner Product)

Young-II Cho'- Hyeok-Ryool Kweon'

ABSTRACT

A multiple vector reductive processing occurs during the vector inner product operation ({C] = (Ale. o [B]) and proceeds
at the hardware dyadic pipeline unit. Every scalar result has to be generated with the component merging delay time in the
multiple vector reduction(e). In this paper we propose a new design method by which the component merging time could
be eliminated from the multiple reduction and the scalar results from the reduction(e) could be generated nearly in the almost
same condensed time as the input components are feeded in the dyadic pipeline unit{n) or the output components are drained

out of the dyadic pipeline unit(n), so called a dedicated chained pipeline unit for only a inner product operation.

1. Introduction

The concept of pipelining is to divide a task T into
subtasks (tg, t1, ", &, *+, t~-1) and to assign them to a
chain of processing stations and to let them execute the
sub-tasks parallel. and simultaneous. This principle
could be commonly applied to the instruction-level,the
data-level and the memory access-level [1,2]. In the

% This work was supported by the Grant for Academic Re-
search of Hallym Uni. 1998.
t 43 4 ggdga 29
& 3 o4 ggda ded FFeTEH
EEAS 11999 1149 129, AARER 120000 129 4

data-level pipeline the dedicated functional unit for a
specified operation is divided into the sub-units and
these units must be ordered according to the specified
operation for the dedicated algorithm, In the past these
subunits were connected in a reconfigurable way due
to the necessity of each operation, but nowadays, they
are as a unit dedicated a priori for the specified
operations (3, 4].

The functional unit in which process the data could
be divided into the segments and they have to be
ordered as cascade of the order in which the algorithm

of the operation processes. Assuming that the order of

CHEYHAEME (HEMENA SBTIAAZIS] MAE SISt 4274 3987

segments is the hardware of the cascade-type, each
segment has a common propagation delay time and does
not need to be only some functional unit, but may be
a latch for a delay time unit when needed and the
segments could be treated not only as a physical
hardware but as a timing unit for the propagation of
a subunit.

What is characteristic here is that the same type data
have to be processed in the same operations in the
data-level pipeline. It means that the object of the
operation is a data streamn and that the processing must
be executed without the blank during the whole
segmented operation. A dedicated pipeline is composed
of the functional hardware units from the beginning to
the completion of the single operation and the functional
hardware units are connected a priori in a fixed order.
The propagation delay time of the segments has to be
identically designed and the shorter the propagation
delay time, the higher the performance of the pipeline
[5-8]. The pipelined functional units composed of the
stages could be sorted as the followings in terms of the
operating methods of the vector data.

® Monadic pipeline : to operate on one vector unit
as input and to result in one vector unit.

® Dyadic pipeline : to oprerate on two vector units
as input and to result in one vector unit.

® Reductive pipeline : to operate on one vector unit
as input and to result in a scalar.

® Chained pipeline : to operate on multiple vector
unit as input and to result in multiple scalars
(vector in inner product by a dyadic and a re-

ductive pipeline).

In the monadic pipeline the number of the output
components is the same as the number of the inputs
and in the dyadic pipeline the number of the output is
a half of the inputs, and the output components from
the reductive pipeline is not vector but a scalar. In the
Cray, the reductive operation is performed in the dyadic
operation pipeline through the vector register external
to the pipelined functional unit [8-12]. In the monadic
- and the dyadic pipeline of the dedicated functional

units the draining time can be the same as the feed-up
time, while the draining time in the reductive and the
chained pipeline should be longer than the feed-up time.

Therefore, we propose here a design principle that
can be applied only for the chained pipeline unit to
perform a dedicated inner product operation, in which
the results can be drained as near as possible to the
time of the feed-up operation, because the output
draining time must be the same as the input time in

a ideal data-level pipeline [13, 14].

2. Reductive pipeline operation

It is characteristic that the reductive pipeline unit has
the two input ports and one of them is for external input
and the other for the feedback of interim result and that
the operation generates a scalar result finally. In other
words, it means that the operation executes dyadic on
the stream input of one vector unit data and results in
a scalar output. This operation could be represented as
s « f/V; here f means a dyadic function as addition,
subtraction, multiplication, division that could operate
on two input operands and V is a vector that is
composed with more than one components. Besides
those operations there can be some operations like
Search Maxima and Search Minima and so on - [8].
To generate a scalar result from the vector input, it is
inevitable to use vector merging operations. In the past
such a vector merging operation was achieved through
the high utilization of the PE’s [11]. Here we have
examined the possibility that such an operation could
be performed in a dedicated pipeline specified only for
the reductive operation. The reductive operation can be
represented as S= oA O @O 0 Q4 O+ O Ay1. The
s is the scalar result of the operation(e) and the a; the
components of the vector. The structure of the
processing cycle time of the reductive operation(e) can

be analyzed as (Figure 1) and the followings.

1) Fill-up time(fu) : fu = kr, n > kr.
The length of time until all of the segment(kr) will
be filled up from the beginning. The pipeline has to

3088 StnFENeIER =EA H7TH M125(200012)

"5

o2, kry s scalar
-

a; 7

a fu kr fill-up time
< b : feedhack time
= at . merging time

3T—-—-> dt : scalar drain time
(Figure 1) Timing structure of the reductive
processing

operate dyadically on the components of input vector
unit and the neutral operand (For example, 0 in a=a
+0,1ina=a‘1).

2) Feed-back time(f) :

Qfpl=n-2kr,n>2krorfbl =n- 1-kr,n >
1-kr.
The length of time until the last component(n-th)
enters into the first segment(0) of the pipeline after the
time of the fill-up operation.

@ ff2=n-knr

The length of time until the a data of (n ~ kr)
processes with the result data b; from the kr segments
and at last each segment (kr) is filled with operands
(kr) in the reductive pipeline operation.

3) Merging time (mt) :

The length of time until the operand that stays in
each segment merges to a pair in the first segment and
the last merging is completed in the first segment or
the scalar result. It could be obtained as a constant
determined by the number(kr-1) of the segments.

4) Draining time(dt) :
The length of time until the last pair of the operands
for the last operation processes from the first segment
(0) to the last kr-th segment and results in a scalar.

Besides the above described timing structure tran-
spiring within the pipeline operation, we need the fol-
lowing cycle time units.

® B, : Bus cycle time at which one data occupies
on the parallel bus.

® P, : Average propagation delay time at which
the data are processed in every segments.

® Tp_: Pipeline processing time from the first
input till the first output, Set-up time.

Although the cycle time Tp_ is the length at which
the n components are processed in the monadic - or the
dyadic pipeline by the case n >> kr, it has to mean
the time that the last two operands should merge in the
first segment in the reductive pipeline. It is char-
acteristic that a reductive pipeline operates dyadically
on one input vector unit and results in a scalar value.
Therefore, one input of the two has to accept the
external input and the other from the feedback of the
interim output results. It is called as internal input
operands. The reductive operation can be represented
aS §=A O A O A OO G 00 Unl.

If n > kr, the total processing cycle time (Tpr) should
be composed of fu+fb2+mt+kr;if n s kr, fu+mt+
kr without the feedback (fb2). After the feedback oper-
ation (fb2) the operands that stay in each segments have
to become a pair of operands in the first segment. The
time, in which the last pair is set up in the first segment,
is called the merging time (mt). It is a kind of a priori
delay time in the reductive pipeline operation and is
constant numbers caused by the number (kr) of the
segments as the followings.

kr :2345678910....16171819...32 384D
T A O O A IO B

m:2581R2162040.... 040BL... 1016717418
VVVVVVVYV VVVVNL DV V VIV

d:33444455....5666...67 77,
VAN AN /A AR AN

The merging time {(mt) can be derived as followings,
related with the number of the segment (kr). The value
of the dd is the difference between the merging time
(mt) of each reductive pipeline (kr). The number (kr)
of pipeline segments can be represented as 2°+1,0<i
< 2% If i =0, the merging time (mt’ : underlined mé)
could be calculated as the following (1). If i >0, the
distance of the merging time(dd = (x + 2)-1) has to be
added to (1). Therefore, in case of n 2 kr, the merging
delay time is as the following (2).

mt = x2 n
mt = x(2°+1) + 21
= xkr + 2 2)

CHEYEZEM2N(HEMENUIM BERIHAIZIY MHE 2B AH 3989

Here the difference between the conditions (n > kr)
and (n < kr) that results from the dyadic operations is
whether the feedback time (fb2) is in the reductive
operation as the followings (3), (4) or not.

n>kr,
Tpr = fu+ b2 + mt
=(kr+n-kr) + xkr+ 2

=n+mt (3)
nskr,
Tpr =fu+mt

= kr + mt (4)

We consider here the condition of (n > kr) rather than
(n<kr). The reductive pipeline operates on two op~
erands; In other words, dyadic operation. As described
above in (Figure 1), it needs the external operands of
the number of kr and the neutral operand (0 or 1) by
the control signal m0 in the fill-up time (fi) for the
operands (kr). It could be called a neutral operation
performed during the fill-up time (fu). The rest op-
erands (n—kr) in the vector components have to be
processed dyadically with the feedback of the interim
result operands from the neutral operations until the last
operand (n-th) is feeded in the first segment (0) of the
pipeline. Here it needs the control signal m! and m3
in the feedback time (fb2) for the processing(n - k - kr,
k = {i | i = integer}). It could be called the feedback op-
eration. Next, it needs the time to merge the operands
stay- ing in each segment (kr). It could be operated
on the operands that are distributed for the dyadic
operation by the control signal mI,m2. This time is
called the merging time (m¢) and defined as a constant
determined a priori from the number of pipeline seg-
ments (kr). The operation repeats until the last merging
proceeds in the first segment. Therefore, it needs the
processing cycle time (n > kr, Tpr) to operate on the
components (n) of a vector unit reductive.

3. Chained operation for vector processing

The chained operation for vector processing is com-
posed of both the dyadic vector operation and the above
described reductive operation as (Figure 2). It is con-

sidered that there are 4 kinds of the dedicated functional
unit for the operation of the inner product [8, 9].

Ni] — ;)
Bl —| °

> scalar s'an

(Figure 2) Chained operation structure

It needs at first two vector units(respectively 2-
dimensions) as source operands for the inner product
(Clm, n] = Alm, t]e.0B[¢, n]) and the length t of the
row components of vector [A] and that of the column
components of vector [B] are processed in the dyadic
pipeline(a). Here the t is the vector length equivalent
to n in the above (3),(4).

The result components of the dyadic operation will
have the length t and conquently are resulted in a scalar
from the reductive pipeline(e). In the inner product the
results (so, 81, ***, Si, *** Smen-1, Si = COOCI\, *** ,OCO, ***, O
ar-1) of the dyadic operation (o) have to be grouped with
each separate other t components and feeded in the
reductive pipeline (o) and resulted in the number of m-'n
scalars. For this reason the result of an inner product
is Clm, nl.

The dyadic operation(a) for the (ci = (aobi), i=0,1,
2, +,m-1.7=012 -, 1-1.k=0,1,2, :--,n-1) have to
perform the operation(n) ¢-m-n times, and the reductive
operation(e) for the (si = (ci)oe(ci)e(cik):e -+ elci)e -
olcah-1,1=0,1,2, <+, i, =-, t-1, > k) of the s has to
be executed with the input(z-m-n) at m'm times and
results in the scalar of the m'n. The processing cycle
time from the vector ({(cx)o(cihe * o{cie - elcikh-1)
to a scalar component(si) of the result matrice C[m, n)
is the t'm-n. In case of t > kr, the reductive pipeline
cycle time (Tpr) is fu +fb2 + mt. Therefore, the total
processing cycle time for the matrice Clm, n] will be
(Tpr'mn + kr)-Ps. The average propagation delay
time Pe of the segments should be as double as the bus
cycle time Bq, because the operands have to be
distributed through the demultiplexing of the dyadic
pipeline unit (Py = 2-B).

3000 st=RFEMZIEE =B M7H H1252(2000.12)

3.1 Chained operation with sequential reductive
processing

To chain the two operations, the dyadic pipeline (o)
has to be connected with the reductive pipeline (o) and
the results of the dyadic operation () have to become
the input for the reductive operation (). Until now such
reductive operation that results in a scalar value from
the vector has to be performed in the normal dyadic
pipeline unit [11].

As mentioned above,the total processing cycle time
of the chained operation could be Tpc =Tpd+Tpr. But
it is only the case when the results of the dyadic pipeline
can feed directly the reductive pipeline as input. Because
of the merging delay in the reductive pipeline the result
vector unit (i + 1) could be mixed with the components
of the vector unit (i) in the reductive operations. Such
a phase is called an operand conflict. To avoid such
an operand conflict a dummy segment buffer in which
the components of the vector unit (i + 1) can stay for
waiting during the time (k7) until the vector unit (i)
merges completely, is designed between the dyadic (o)
and the reductive pipeline (o) as the following (Figure
3)[8,9] or during the reductive operation (o) of the
vector unit (i) the intermediate results of the next vector
unit (i+1) must be stored in the vector registers or in
the memory (be a local memory). Such a method could
bring about a bottleneck.

The merging time of the reductive pipeline (o) is a
constant value derived from the number (kr) of the
reductive pipeline segments. In the consequence of that,
each scalar result components of the C [m, n] have to
be generated with the time distance equivalent to the
merging delay time (mit). Therefore, the reductive
operation (Tpr) for the inner product (Clm, n] = Alm,]

o.0 B[t, n]) should proceed m-n times Tpr for the scalar
component of the vector C[m, n] as in the following (5)
totally.

Stimn] = Tpd + FIFOgm. + Tpr
= kd + FIFOQ4me + (t + mt) m'n + kr (D)

In the reductive processing time(Tpr = (¢ + mt}) m'n
+kr) (5) the term (1 + mt)-m-n could be analyzed as
the term that is the results (2:m-n) from the dyadic
pipcline (o) and also, the input operands for the
reductive pipeline (o), and as the term that is the total
merging delay time (m¢-m-n) for the final results (m-n)
which elapses m'n times sequentially, as if done in the

non-pipelined functional units.

3.2 Chained operation with parallel reductive
processing

As described above, to escape the operand conflict
or the bottleneck, the scalar results could be generated
with the distance of the merging time (mt) in the
sequential processing pipeline. Such an useless merging
time (mt) is proportional to the number (m-n) of the
component of the vector Clm,n]. The reductive op-
eration could eliminate the useless merging time (mt)
by the parallel design of the reductive pipeline units (o)
in an interleaved fashion without the buffer memory or
the waiting state in memory between the dyadic pipeline
and the reductive pipeline as in the following (Figure 4.)

We propose here a design method that can eliminate
the merging time (mt). It is the method that the
reductive pipeline units () have to be parallel designed
for the elimination of the merging time (mt). Here the
number (rp - n) of the reductive pipeline units (o) should
be a priori the same number as the merging time (rp'n

reductive pipeline

dyadic pipeline

FIFO-buf fer |;>

S 01 2. kr|1—> (mn)
input — 0i 1 2., kdjl—>]...; —> -l output
(2‘L~m-n) —_— : -1 P i

[{<—— Tpd—> | <FIFOuine—| |{¢—— Tpr >

(Figure 3) Sequential chained reductive pipeline with memory operation

CHEHEAEXM2IWERMED0IA BHXIAAIZISl MAE Tt A 3991

=mt), because the length (1) m-n times should be
distributed to the reductive pipelines during the merging
delay time (m¢) by the modulation.

The term mt-m-n in (5) that means the sequential
processing cycle time has to be expressed as the parallel
processing of the reductive operation as in the (Figure
4). In other words, the term mt is the same as the
pipeline segments and the m-n as the input vector, as
the (k+n) clock cycle time should be needed to
complete n tasks using a k- segments pipeline [14].
Therefore, the parallel reductive processing cycle time
(Ptlm, n)) for the m'n scalar components of the vector
Clm,n] is the sum of m¢ and m'n and the final draining
time (dt = kr) as the following (6).

Ptim,n] = Tpd + Ppr

=kd + t'm'n + (mt + m'n) + kr (6)

In the parallel chained pipeline the number of the
reductive pipeline units is equal to the merging delay
time of one reductive pipeline and thus, the length (1)
of one vector unit (i) could be distributed to each parallel
reductive pipeline units. It is not necessary to wait for
the merging delay time only in one reductive pipeline.
In the (Figure 4) the module distributer should control
the pipeline selecting demultiplexer that takes the result
vector (2-m-n) of the dyadic pipeline (g} as inputs to
distribute the length unit (1) in turn to each reductive

pipeline unit.

i‘m'n

dyadic pipeline

i K . kd|—
zggﬁm-n) ? =Pt TE T T (emen)
f{{—— Tpd —>| I

. Tpr
reductive
pipeline l

: ! hanic for distributi

The pipeline selecting demultiplexer that supplies the
parallel reductive pipeline units with the vector of the
t units has to be controlled by the module distributer
as in the (Figure 4). The module distributer as a control
unit for the pipeline selecting demultiplexer is composed
of a decoder and a decoding address counter (D/A-ctr)
and a modul counter with parallel input ¢. The D/A-ctr
takes the pulse 1 for the up—counting modulo ([logz rp'nl)
whenever the modulo counter becomes (ctr|1) = ¢ and
it should count up m-n times t. Then the vector com~
ponents ('m-n) from the dyadic operation could be
supplied to each reductive pipeline in turm with length
of 1 at m-'n times.

4. Performance evaluation

In the chained operation for an inner product the
number of the input components for the dyadic operation
(o) is 2- 1-m-n with the processing cycle time 2- t-m'n*
B to- tally and the number of components ¢-m-n
results from that operation (o) with the speed Py, and
then the components m-n as the output of the reductive
processing (¢) with the speed t-P.

As mentioned in the [9], the hardware for the inner
product is implemented with the pipelined network. But
here the implementing method is that the dyadic unit
(o) and the reductive unit (@) are composed of the
pipeline segments. If the reductive pipeline operation

l—)[module distri'but.er‘]

I I
5[pipeline selecting demultiplexer

Il

(n'n)
output

(Figure 4) Inner product pipeline with parallel chained reductive operation

3992 siREEANCIEE =EX M7H M12z=(200012)

follows the dyadic operation directly, it is problematic
when not one vector unit but the multiple vector units
are processed with t-length unit in the reductive unit
(@). In other words, an operand conflicts could occur
between the reductive operations of the multiple vector
units. Therefore, it is necessary for the memory
operation (or FIFOgme) to be inserted between the dyadic
- and reductive operations. The sequential inner product
operation has to be executed by dyadic functional unit
(n), memory operation and reductive functional unit(e)
in turn (8]

In the sequential reductive pipeline for the inner
product by [8] the output components (t-m'n) of the
dyadic pipeline (o) have to be feeded into the reductive
pipeline (o) through the queue buffer operation by every
reductive processing cycle time (t + mt) in the (5). As
a consequence, it means that the every output of m'n
from the reductive operation () has to be generated
with the time distance (1 + mt).

In the parallel reductive operation (6) for the multiple
vector the components of 2 m-n from the dyadic pipe-
line (n) can be directly feeded into each different reduc-
tive pipeline units(e) during merging of the former
vector without any delay time (mt) and without any
queue buffer operation time except an initial merging
time (mt), because the input components ¢ m-n should
be feeded with careful control into the different reduc-

tive pipeline units(e) with the number of every t com-

Spr I(lo+lto)o umt) 1 rmta)2
o-n —+—<i———+—+-——}—+

ponents by the control of the module distributer as in
the (Figure 4).

Therefore, the scalar results generated from the each
reductive pipelines could become a stream with the
components m-n from the parallel reductive(e) and then
the time distance between the components is ¢ Pg in
(6). If we compare the result output time from the
sequential with that from parallel reductive operations,
we could take the time distance between each output
components as the following (Figure 5). As we can see
in the (Figure 5-a), the processing of the vector length
1 has to be executed m'n times by one reductive
pipeline unit sequentially. But in the (Figure 5-b).
because of the parallel reductive pipelines a merging
delay operation (i) could be executed during the next
feeding time (i +1). Therefore, only the last merging
time (mém.n-1) has to be added physically to the total
feeding time (Zo+ b+ L+ -+ L+ + Ippo)).

As a result, the t of the t-m'n in (5),(6) merely
means the length unit that should be feeded into the
other reductive pipelines, and the (t + m¢) in (5) means
the processing cycle time at which it could take the
length (1) of vector to be executed. As mentioned above,
the comparison of mt'm-n in (5) with mt+m-n in (6)
is like that of the non-pipelined processor to the
pipelined processor [12]. Therefore, we can see that the
total time of the (5) is much longer than that of the
(6) as in the following dif- ference(7).

(L+mti); (Lan-1*BEpnt Yaonel
L "

g Loy

1
1 @t
TP T
1 mt
rp2 ! s
! 1 @t
rpi l——f*——+———i- +— ...

ot f—t+——+ . ..

dn.n-1 @tajn-1
T T T

(b) Paralle! timing structure

(Figure 5) output time of the sequential and the parallel reduction

CHEHEGEMC(HEMEN0IM SERINAIZIS MAE 215t &2 3993

Diff(Stlm, nj - Ptlm, nl) = FlFOtme + mt- (m'n - 1) -m-n
(7)
Hence, the FIFOune is simultaneous time in the total
processing, so we can derive a pipeline unit time per
output(m-n) from the sequential reductive and parallel
operation time except the hardware unit times kd,
FIFOume, k7 because of the intrinsic constant from the
(5), as the followings (8), (9).

Ty = (t'm'n + mt-m'n}) /m'n

=1 +mt 8
T = (t'mn + mt + m'n) /mn
=1+ (mt/mn)+1 9)

We can see from the two equations (8), (9) that each
of output components (m, n) have the time (1 + mt) and
t+(mt/mn), and from the equation (9) that the
parallel processing time approaches to ¢, if m>>0, n
>> (. Therefore, we can define the ratio Tsp/ Tpp, as
a speedup (Sp) factor of a parallel reductive processing
using rp-n processing hardware [13]. This is the ratio
of the sequential processing time to the parallel
processing time per vector unit .

T L+mt L+ mt

Sp = - - (10)
P T, irmt/mm+1 .

From the equation (10), we consider the case of 1
>mt, tsmt. If t>mt, 1<Sp<2, and If t<mt, in
other words, if 1 <<mt, 2 < Sp < mt. Therefore, we can
see that the longer the length (1) relative to the merging
time (mt), the less the speedup (Sp), and the shorter,
the better.

Moreover, we must consider that the memory op-
eration time should be added to the (8). As regards the
total components, the sequential processing has the time
mt (m-'n-1) longer than the parallel processing as we
can see at the Figure 5. In the above (10), if m >> 0,
n >> 0, the term mt/m-n=0. Therefore, we could
discard the term (mt/m-n+ 1). The efficiency (Ep) of
the parallel reductive operation could be defined as the
ratio (Ep=Sp/rp'n<1) between the speedup factor
(Sp) and the number of units (mt=1p'n) as the

following (11) and is a measure of the cost effectiveness

of computations.

L+ mt
Ep = —— 1n
r'mt

As we can see in the (Figure 5), it needs not to be
considered as the operation time, because the merging
delay times (mim.n-1) of each reductive pipeline can be
brought about simultaneously during the reductive
operations except for the last (Ly.n-1).

We can derive a ratio from the number of the results
(m-n) of the parallel reductive pipeline to their pro-
cessing cycle time (¢-m-n + mt) and how many times
the results (Rpp) can be processed in the parallel
reductive pipeline during the time at which the results
(m'n) can be processed in the time (:m-n + mt-m-n)
in the sequential reductive pipeline.

m'n
Rpp = T mE (t'm'n+mt-mn)
m’n® (1 - mt)
S Trmnom 12

As in the (12), the parallel re -ductive pipeline could
do the results. Here we can define as output the density
of the parallel reductive pipeline operation,the ratio of
the parallel reductive operation to the sequential
reductive as the (Pams = Rpp/m-n) in the same time
as the sequential reductive operation as the (13).

mn-(t + mt)
PdCHS. S ——— (13)

t'mn+ mt

5. Conclusion

It is characteristic that the speed of output draining
after a certain propagation time should be the same as
that of input feeding in a data-level pipeline for a vector
processing. But in the chained operation, for example,
inner product, it could not be so in the sequential re~
ductive pipeline as mentioned above. Therefore, we
propose here the parallel reductive pipeline should be
designed.

In the consequence of the (13), if the results (m - n)
would be used as the elements of an image processing

3094 StRBEXMIEE =2X] MTH M125=(2000.12)

we could expect that the parallel reductive pipeline could
generate the better density or resolution than the se—
quential reductive pipeline in the same time.

References

[11 D. C. McCrackin, “Eliminating Interlocks in Deeply
Pipelined Processors by Delay Enforced Multi-
streaming,” IEEE Trans.on Comput., Vol.40. No,10.
Oct. 1991.

[2] H. S. Stone, High-Performance Computer Architec-
ture, 2nd ed., Addison-Wesley Publishing Com-
pany, 1990, pp.122-137.

[3] R. Gupta, A. Zorat and I. V. Ramakrishnan, “Re-
configurable Multipipelines for vector Super com-
puters,” IEEE Trans.on Comput., Vol.38, No.9. Sept.
1980,

[4] K. Hwang and F. A. Briggs, Computer Architecture
and Parallel Processing, McGraw-Hill. 1984. pp.
151-154.

(5] J. R. Jump and S. R. Ahuja, “Effective Pipelining
of Digital Systems," IEEE Trans. on Comput., Vol.
c-27, No9, Sept. 1978.

[6] S. R. Kunkel and J. Smith, “Optimal Pipelining in
Supercomputers,” The 13th Annual Int.Symp. on
Comp. Arch. Conf. Proc. ACM, 1986.

[7]1 P.M. Kogge, The architecture of pipeline computer,
McGraw-Hill, 1981, pp.134-173.

[8] L. M. Ni and K. Hwang, “Vector-Reduction Tech-
niques for Arithmetic-pipelines, “IEEE Trans. on
Comput., Vol.c-34, No.5, May, 1985.

[9] D. J. Kuck, The Structure of Computers and Com-
putations, Vol.1, New York : Wiley, 1978. pp.257-
258,

[10] E. E. Swartziander, B. K. Gilbert, . S. Reed, “Inner

Product Computers,” IEEE Trans. on Comput., Vol.
c-27, No.l, Jan. 1978.

[11] J. R. Vanaken and G. I Zick, “The Expression
Processor : A Pipelined, Multiple-Processor Archi-
tecture,” IEEE Trans. on Comput., Vol.c-30, No.8,
Aug, 1981.

{12} R. M. Russel, “The Cray-1 Computer System,” Cray
Research, Inc., Tutorial Advanced Computer Archi-
tecture, IEEE Computer Society, Order No.667,
1986, pp.15-24.

{13] C. V. Ramamoorthy & H. F. Li, “Pipeline Archi-
tecture, “Tutorial Computer Architecture, Comp.
Soc. Or. Nr. 704, THE COMPUTER SOCIETY OF
THE IEEE, 1987, pp.38-79.

[14] D. 1. Moldovan, Modern Parallel Processing, Uni-
versity of Southern California, 1986.

[15] M. M. Mano, Computer System Architecture, 3rd.
Prentice International Ed. 1993, pp.305.

= g ¢
e-mail : yicho@sun.hallym.ac kr
1971'd zefdigta SY4(EHAh
19801 (M%) Berlin 3t #H¥FE
TR (AL
198248 (PR 3994
1985~ &4 gt w4
1996 ~ A S gr R (A
BAEok: HFE F2AA, HEAME 44
o E
e-mail : kweonhr@korea.com
1998 ZAadga EY(&Ah
1999¢~ & A gt AT
8 Erd
TAEok AFY F2AA, BE
e 2A

