Median ZE{E 213t AMESH R 2DRIE 0l A 2845

Median ¥E]E $]3 RMESH #d <3 Ze 47|

N o9

[ =Sy

Aqtt

t.X A

[—2

Ho
)]

ko

gf

Median 9ej= YA £, 297 £4, 22)a Ay Eejdo 7ldso ofd dgels T} sh5sith £ =8N
€ VLSI 784 A3d ¥y 75 A(RMESH) 7244 median YEIFE A 139 9 231 94 9nF& A
s, Y EFZAE ZE HA0lNY AT BRES vy o8 ¥ =R Adse WY ¢uEe 458 3
7hech A2 M Aol 14049 A1d Pojst Noja =S Zo] pd o, B FEAME (MDY N BREE %
£ i RMESH 72X 9 gnelde O(Mw) A S3A=E Ret 28 M @49 2309 949 277t NxNojn
FES 2717t wxw D 78, & =FfA H4® NxN RMESH A48 median ¥Ed ¢mZe NxN o
He O(Mw’) A7 Btk S B4 O(Mw) Aol Asiol Ak

Design of RMESH Parallel Algorithms for Median Filters

Byeong-Moon Jeon' - Chang-Sung Jeong''

ABSTRACT

Median filter can be implemented in the binary domain based on threshold decomposition, stacking property, and
linear separability. In this paper, we develop one-dimensional and two-dimensional parallel algorithms for the median
filter on a reconfigurable mesh with buses(RMESH) which is suitable for VLSI implementation. And we evaluate their
performance by comparing the time complexities of RMESH algorithms with those of algorithms on mesh-connected
computer. When the length of M-valued 1-D signal is N and w is the window width, the RMESH algorithm is done in
O(Mw) time and mesh algorithm is done in O(Muw?®) time. Besides, when the size of M-valued 2-D image is NxN
and the window size is wXw, our algorithm on N XN RMESH can be computed in O(Mw) time which is a
significant improvement over the O{Muw?) complexity on N xN mesh.

1. Introduction

A regular mesh of size NxN has a communica-
tion diameter which equals to 2(N—1). As a result,
a lower bound for the time complexity for problems
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that involve comparing or combining data that reside
in different processors is O(N). To improve the time
complexity  for these problems, researchers have
studied special architectures whose bus system'can
be dynamically changed. Reconfigurable mesh archi-

. tectures set an excellent example for such machines.

These include the polymorphic-torus network of Li
and Marescall, 2], the reconfigurable mesh with
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buses(RMESH) of Miller et al[3, 4], the processor
array with a reconfigurable bus system(PARBUS) of
Wang and Chen[S], and the reconfigurable net-
work(RN) of Ben-Asher et al.[6]. Conceptually, these
reconfigurable architectures are functionally equiva-
lent and the regular structure of the reconfigurable
architectures makes it suitable for VLSI implemen-
tation such as the YUPPIE(Yorktown Ultra-Parallel
Polymorphic Image Engine) chip{2] and the PPA(Poly-
morphic Processor Array)[18].

On the other hand, a median filter{7] is a simple
nonlinear smoothing operation that takes a median
value of the data inside a moving window with
finite length. Fitch et al.[8] introduced powerful tools
for the analysis of the median filter, namely, thre-
shold decomposition and stacking property, which
establish a relationship between integer(multilevel}
and binary domain filtering. And it has been shown
that the median filter belongs to the class of stack
filters which correspond uniquely to positive Boolean
functions(PBFs)[9]. This means that the principle of
threshold decomposition and binary processing with
the unique PBF can be used to implement the me-
dian filter in the binary domain. The binary proce-
ssing approach to realizing a multilevel signal pro-
cessing is widely used in VLSI implementations
because of its simplicity. Based on this advantage,
several VLSI-implementable algorithms for the me-
dian filter have been proposed[19-21]. However, they
all employed the bit-serial design at the input stage
so they are not practically the parallel algori-
thms[10). In addition, it is very difficult to define the

PBF(window operator} of the median filter according
to its size. Fortunately, the median filter has effi-
cient realization because it has linearly separable
PBF in the binary domain. In this paper, we restrict
ourselves to the development of RMESH algorithms
for one-dimensional and two-dimensional median
filtering, which are helpful to VLSI implementation,
by using the properties of the median filter such as
threshold decomposition, stacking property, and linear
separability. This is the first time the design of
RMESH algorithm for the median filter is reported
in the literature.

The rest of this paper is organized as follows. In
Section 2, we review the basic concepts needed in
the binary processing of the median filter. Section 3
describes the RMESH model that we adopt and
shows some algorithms proposed in other literatures.
The efficient RMESH algorithms for the median
filtering of 1-D signal and 2-D image are proposed
in Section 4. Section 5 proves the RMESH archi-
tecture is superior in performance as compared to
the conventional mesh architecture with fixed net-
work topology and finally some conclusions are given
in Section 6.

2. The Properties of Median Filters

In this paper, we use integer- and binary-valued
signals/images which are referred to as the integer
domain and the binary domain, respectively. Upper-
case letters are used for integer domain filtering and
lowercase letters for binary domain filtering, unless

Integer Domain 110233122 111233222

Threshold
decomposition

Binary Domain

T

Stacking Property
(Add binary outputs)

level 3: 000031000 Binary Med. Filter 000011000
level2: 000111011 Binary Med. Filter 000111111
level 1:110811111 Binary Med. Filter 111111111

(Fig. 1) llustration of threshold decomposition and the stacking property of
median filter with window width 3



otherwise specified. The key for the binary pro-
cessing of the median filter is the use of the thre-
shold decomposition and the stacking property{see
Fig. 1). '

A sequence of the window width w among signal
length N will be denoted X=[X;X;:.X,], in
which X; is a M-valued signal sample and w is
generally odd.

Definition 1. The threshold decomposition of an M-valued
signal X, is the set of M-1 binary signals, called
threshold signals, x!, 2%, e, ™! which are defined by
1, if X;2m

0, else. L]

Note that the sum of the threshold signals x] is

ar= r'(x,-)={

X, ie, gixT=X,-.
Definition 2. The binary filter A -) with the
window width w is said to possess the stacking
property if and only if
Ax)2AY), whenever x>y ®
The stack filter S; in the integer domain is
defined by a binary filter Ax) as follows

S(D= 5 5" = S A 5.

Fig. 1 illustrates that applying a median filter to
M-valued signal is equivalent to decomposing the
signal to M-1 binary signals, filtering each binary
signal with the binary median filter or with the PBF
fmef 2, and then adding the binary output signals
together. At this time, instead of adding the binary
filter outputs, we can easily obtain the multilevel
output by noting that the binary outputs possess the
stacking property[9]. So the multilevel output is the
level just before the transition from 1 to O takes
place. However, we have a difficult problem that is
how we define the PBF of the median filter accor-
ding to its size. Fortunately, this problem can be
solved by the linear separability[11, 12].

Definition 3. A positive Boolean function Ax) is
said to be linearly separable if and only if there
exist real number W, W,.-, W, and T such that
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if Z}l Wa T
otherwise.

£, ...,xw)=[ 1,
0,

The weights W, and threshold T can be restricted
to be positive integers. = .
Definition 4. A stack filter defined by a PBF Ax)

is a median filter if and only if A x) can be expre-
ssed as

ﬂxl,'",xw)=l 1, if gxiz(w+l)/2
0, otherwise,

This means that the median filter can be realized by
the linear separability in the binary domain. =

3. RMESH Model

The parttular reconfigurable mesh architecture
that we use in this paper is due to Miller et al[3,
4], The RMESH consists of NxN processors con-
nected to a grid-shaped reconfigurable broadcast bus,
where each processing element(PE) has four locally
controllable bus switches labeled E(east), W(west),
S(south) and N(north), as shown Fig. 2. The swit-
ches allow the broadcast bus to be divided into
subbuses, providing smaller reconfigurable meshes.
Furthermore, in one unit time, each PE can set any
of its four switches and can send and receive a
piece of data from the bus. To read the content of
the broadcast bus into a register R, the statement
Ri=read(bus) is used And the RMESH model of this
paper allows several PEs to read the same bus
component; however, it does not allow more than
one PE to write on the same bus component at the
same time(i.e, CREW model).

During the last decade, a large number of algo-
rithms have been designed to run on reconfigurable
architectures. As mentioned earlier, conceptually, the
reconfigurable architectures are functionally equi-
valent. These include algorithms for sortingl6, 17,
fundamental data manipulation operations[1, 3, 4, 16],
and image processing[13-15]. Li and Maresca design-
ed three algorithms based on the Polymorphic-torus
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(Fig. 2) 4x4 RMESH

such as an O(1) time boolean algorithm, an (1)
time maximum({minimum) algorithm, and an O(log )
time sum algorithm{1]. Miiler et al. designed 1)
time algorithms for performing various logic operations
and finding maximum(minimum), and an O(logN)
time algorithm for finding connected components of a
graph( N is the size of the mesh)[3, 4]. Jenq and
Sahni presented a number of algorithms for funda-
mental data manipulation operations on reconfigu-
rable mesh architectures[16]. These include an O(w}
window broadcast algorithm, O(log») time algori-
thms for prefix sum and data sum, and (1) time
algorithms for ranking, shift, random access read
(RAR), and random access write(RAW). They also
designed an O(plog(n/p)) time algorithm for the »
angle Hough transform[13], an (1) time algorithm
for the q-step shrinking and expansion of a binary
image, and an O(M?) time algorithm for template
matching using an M xM template and an NxN
image[14l. Wang and Chen designed a number of
constant-time algorithms on the PARBUS[5]. Ben-
Asher et al. examined the power of reconfiguration
and presented a number of algorithms, such as an
O(logn) time algorithm for addition and an 1)
time algorithm for sorting on a reconfigurable mesh
of size # xn xn[6].

4. Parallel Algorithms

4.1 One-Dimensional RMESH Algorithm

For convenience, we assume that the 1-D signal
length is N and it is mapped onto the one dimen-
sional processor array on row 0 of NxN RMESH
such that PE({} contains M-valued signal X(i). Each
processor PE(i) has the array «[1, -, M—11(9,
which will be obtained by threshold decomposition of
X(i). That is, Adm)(s) is the binary value related to
mth level of X(i). Also, each processor has the
array med(1, -+, M—1)(i) to contain the value obta-
ined by binary median operation at each level. This
operation can be easily achieved by using the linear
separability(see Definition 4). That is, in order to
obtain the median output in the binary domain, the
sum of all binary values in a window is thresholded
by (w+1)/2. Finally, PE(i) can determine the multile-
vel output MED(i) by examining the level whose
output is 1 and the next greater output is 0 from
med([1, -, M—1)() array by stacking property.
When the window width is w, the 1-D signal
parallel algorithm on RMESH is as follows.

Algorithm 1 1-D Signal Algorithm for Median Filter

Input X(0), X(1), -+, X(N=1)

Output MEI(0), MEI(1), -, MED(N—-1)

Step 1. PE()) gets x[1Xd, A21(3), -, AM—-11(d)
from M -level signal X{i) through threshold
decomposition.

Step 2.

Repeat for m := 1 to M-1
PE({) gets medlm)(i) by applying the Al-
gorithm 2 at level m.

Step 3. PE(/) obtains MED(:) in the integer do-
main by searching the level whose output
is 1 and the next greater output is 0 from
med[ 1), med 23}, -+, medl M—1Kd).

Since each PE()) has only the binary value
xlm]() at level m, we need to communicate the its



binary data in a fashion that each PE has binary
values who contribute to obtain the sum in the
window. Fig. 3 represents the terms in sum required
by each processor at each level for w=5 and N=18,
Generally, the unknown signal samples in the
window are obtained by repeating the samples «x,
or xy-; when the window is positioned at the
boundary of the signal sequence. However, we
consider only the remaining signal sequence except
for front and rear parts of signal having | w/2)
length respectively, since the boundary of the signal
sequence is relatively unimportant.

PE(0) : x(0)+x(0)+x(0)+x(1)+x(2)

PE(1) : x(0)+x(0)+x(1)+x(2)+x(3) ignore
PE(2) : x(0)+x(1)+x(2)+x(3)+x(4)

PE(3) 1 x(D)+x(2)+x(3)+x(4)+x(5)

PE(4) : x(2)+x(3)+x(4)+x(5)+x(6)

PE(5) : xt&)\ﬁm@(ﬁtxmt‘ﬁ)\ A\

PE(6) : x(4)+RESIREOARAH._ D
PE(T) : x(Shex(6)en(extBentg) > # 4
PE(8) :x(6)+x(7)+x(8)+x(%¢5ﬁ0)\ A #3
PE(9) : x(7)+x(s)+x(9)+x(10)+xm§ #2

PE(10) : XMM@TMX(‘MHTH)\
PE(11) : x(9)+x(10~)tx"(1~k)+i(‘i +XCH)
PE(12) : x(10)+x(11)+X(H \ﬂlﬁ}‘m)—* #4
PE(13) : x(11)+x(12)+x(13)+xr1~u+\(u)—\ #3
PE(14) : x(12)+x(13)+x(14)+x(15)+x(}§)-> #2

PE(13) : x(13)+x(14)+x(15)+x(16)+x(17)
PE(16) : x(14)+x(15)+x(16)+x(17)+x(17)
PE(17) : x(15)+x(16)}+x(17)+x{(17)+x(17)

ignore

(Fig. 3) Terms in each PE's sum at level m, when
w=5 and N=18

Let’s number the diagonals in this figure by
dividing all PEs at intervals of w and assigning the
main diagonal the number one at each unit. The
diagonal just above this is numbered two, and next

is numbered three and so on. The diagonal just.

below the main diagonal is numbered 5, and the one
below it is numbered 4 and so on. Notice that the
numbers 2~5 are assigned to exactly two diagonals
each. Also note that the number of elements on the
at most two diagonals is 5 for every assigned
number. After assigning the numbers to all diago-
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nals, we examine the terms in each number. Since
we ignore the front and rear parts of signal, the
pattern of x values is found out by examining from
PE() to PE(9) or from PE(10) to PE(14). The pattern
of x values required by each processor at each
number can be achieved by pairing the present
value needed for current step and next value needed
for next step. When we fix -that present value of
PE() is p(i) and next value is a(i), the p(i) of first
step can be obtained by i— | w/2] +(i mod w) and
n(i) of first step can be obtained by i+ (7 mod w)
—(lwf2] —1). Table 1 gives (p(i), n(i)) pair in
each PE for the case w=5 and N=18. Once the (p(i),
n(i)) pair has been obtained, p(i) is used to obtain
the sum value for median operation and the pair
may be changed by left shifting p(i) and exchanging
p(i) and n(i). Initially, n(i) is true for all processors
except those with i mod w = w—1. It is updated
by reconfiguring the RMESH and receiving the
correct value in those processors. Following the left
shift of p(i) and exchange of p(i) and n(i), we get
the new pair (p(i), n(i)), and then n(i) in processors
with i mod w = w—2 is changed. With this insight,
we can design Algorithm 2. As far as the range of
{ is not mentioned in Algorithm 2, we regard its
range as 0 < i<N.

Table 1) (p(/), n(D) pair in each PE at level m, when
w=5 and N=18

(p(i), nti)) | (pli), n()) | (p(i), mi)) | (pfi), n(i)) | (p(i), n(i)

x2), x3) | x3), x(d) | x4), x(0) | x(0), X1} | *1), x(2)
x4), x(5) | x(5), A1) | 1), X2} | u2), %3 | x3), x(4)
x6), x(2) | x2), x3) | A3), x(4) | x(4), x5) | x05), x(6)
x3), x(4) | x4), x(5) | x5), x(6) | x(6), x7) | x(7), (3
x5}, x(6) | x6), x7) | «7), x8) | x8), x(4) | x(4), x(5)
X7, «8) | x(8), x(9) | x9), x(5) | x5), x6) | x(6), x(7)
x9), x(10) | x(10), x(6) | x(6), x(7) | x7), x(8) | x(8), x(9)
1), A7)} xd7), x8) | x(8), x(9) | 9), x(10) | X(10), x(11)
x(8), x(9) | x(9), x(10) | x(10), x(11) | x(11), x(12) | x(12), x(8)
11| x(10), x(11) | x(11), X(12) | x(12), x(13} | x(13), x(9) | x(9), x(10)
12 [ x(12), x(13) | x(13), x(14) | x(14), x(10) | x(10), «(11)} | x(11), x(12)
13 [ x(14), x(15) | x(15), xt11) | x(11), x(12) | x(12), x(13) | x(13), x(14)
14 | x(16), x(12) | x(12), x13) | X(13), x(14) | x(14), x(I5} | x(15), x(16)
15 [ 013, x(14) | x(14), x(15) | X(15), x(16) | x(16), x(I7} | x(17), x(13)

S ©®w oo s wes—AF

Bl ) ] ] .
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Algorithm 2 Binary Median Operation at Level m
Step 1 (initialize}
All PEs connect their W and E switches;
sum[ m]():=0;
Step 2 {present value, p(i)}
for j := 0 to w-1 do
begin
if < lw/2] then
begin
PE(i) disconnects its W switch and broad-
casts ml(i) if i= (wm+H— lw/2] +j
where #=0, 1, 2, -
pli)=read(bus) if imod w = j;
PE(i) connects its W switch if i= (wn+j)
— lw/2] +; where n=0, 1, 2, -
end;
else if j= lw/2] then
P =dAdml(D if imod w=j;
else begin
PE({) disconnects its E switch and broad-
casts Am]() if i=(wn+)—lw/2] +j
where 27=0,1,2,--;
p(i):=read(bus) if imod w = j;
PE(} connects its E switch if i=(wn+j)
— Ll w/2] +j where n=0, 1, 2, -,
end;
end;
Step 3 {next value, n(i)}
for j = 0 to w-1 do

begin
if i< lw/2] —1 then
begin
PE(i) disconnects its W switch and broad-
casts HAml(d) if i= (un+D+j—(l w/2)

—1) where »2=0, 1, 2, ;
n(i):=read(bus) if imod w = j;
PE(i} connects its W switch if ¢ = (wn+))
+;i—(lw2] —1) where n=0, 1, 2, -;
end;
else if j= l«/2]1 —1 then
)= ml(s) if imodw=7;,
else begin
PE() disconnects its E switch and broad-

casts Aml(s) if i= (un+)+i—(l w2l
—1) where 2=0, 1, 2, *
n(i):=read(bus) if imod w= j;
PE({) connects its E switch if i= (wn+j)
+i—(l w/2) —1) where =0, 1, 2, oo
end; :
end;
Step 4 sum{m](#) = sum[m]()+p(i);
Step 5 {update n(i)}
PE() disconnects its W switch and broadcast
Aml(i) if jmodw= w—1 and i=j— lw/2],
where 0 << N;
n(i):=read(bus) if imod w= w-1;
PE(i) connects its W switch if jmod w= w—1
and i=j— lw/2), where 0 <j(N;
Step 6
for j =1 to w-1 do
begin
{left shift p(i) by 1}
for 2 =0to 1 do
begin
PE(G) disconnects its E switch and
broadcasts p(i) if (i—1) mod 2 = &,
temp(i)=read(bus) if imod 2 = &;
PE(i) connects its E switch if (i—1) mod

2=k,
end;
pli):=temp(i),

{exchange p(i) and n(i)}
temp(i):=n(i);

n(i):=p(i);

pli):=temp(i);

sum[ m](d):= sum[ m)()+p(i);

{update n(i)}

PE(i) disconnects its W switch and broad-
casts x[m) () if kmod w= w—1—; and
i=k— lw2], where 0 < k< N;
n(i)=read(bus) if imod w = w—1—; and
lw/2] <i< N,

PE(;) connects its W switch if 4 mod



w=w—1—; and i=k— lw2!, where
0<k{N;

end;

Step 7 {linear separability}

if sum[m)(#) = (w+1)/2 then
med{ m](7):=1;

else
med{ m](#):=0;

4.2 Two-Dimensional RMESH Algorithm

We assume that the processors in ¥ xN RMESH
are indexed such that PE(ij) corresponds to the
image pixel X(i,7. Two-dimensional parallel algorithm
for the median filter is similar to the one-dimensional
algorithm. The difference between them is only the
dimension. That is, since the median operation with
the property of linear separability requires the sum
of all the samples in wxw window, we need to
merge the sum values in each row obtained by
Algorithm 2 and threshold it by (w®+1)/2.

Algorithm 3 2-D Image Algorithm for Median
Filter

Input X(0,0), -, X(N—-1, N-1)

Output MED(0,0), ---, MED(N—-1, N-1)

Step 1 PEG,) gets A11(i 7, x[2]¢i, D, -, AM—-11i, D
from M-level signal X(i, /) through threshold
decomposition.

Step 2 PE(i,) disconnects its N and S switches.

Step 3

Repeat for m = 1 to M-1
PE(,)) gets sum[m](i,/) by applying the Algo-
rithm 2 with an exception of Step 7 at level m.

Step 4 PE(i,/) connects its N and S switches and
disconnects its E and W switches.

Step 5

Repeat for m := 1 to M-1
(1) sumyp(i, ):=0;
(2 fork:=1to (w/2]do
begin
{downward shift sum[m)(i,5) by 1}
for / :=0to 1l do
begin

Median EE{E £I3H RMESH B ¢n2IE9 HA 2851

PE(ij) disconnects its N switch and
broadcasts sum{[#](;, /) if jmed2 =1/;
temp(i,j):=read(bus) if (j—1) mod2 = /;
PE(i,j) connects its N switch if ;j mod

2=1
end;
sumg{{, )= sumyp(i, ) +temp(ij);
end;
(3 for k= 1to lw2])do
begin

{upward shift sum[m](i,7) by 1}

for / =0to 1 do

begin
PE(,7) disconnects its S switch and
broadcasts sum{ml(s, ) if ;j mod 2=1{;
temp(ij):=read(bus) if (j—1) mod 2= 14,
PE(i,/) connects its S switch if j mod

2=1,
end;
sumyp( 4, /)= sumyp( i, /) +temp(i,j);
end;
@ if sumypli, ) = 5L then

med m)(i,7) =1,

else
med m)(i, ) :=0;

Step 6 PE(i,/) obtains MED(i,;) in the integer do-
main by searching the level whose output is
1 and the next greater output is 0 from
med[1Xi,/), med 2)i. /), -, med M—1]G, 7).

In above algorithm, Step 3 shows that each
processor gets sum value in 1-D window with the
width w by applying Algorithm 2 with an exception
of Step 7 at each level. Step 5 explains the process
of obtaining the binary median output at each level.
Because each processor knows sum value in 1-D
window of width w centered at itself from Step 3
PE(i,/) positioned at the center of 2-D window
must collect the sum values of every 1-D window
within the limits of 2-D window and combine them
to obtain the median output in the binary domain by
using linear separability. In Step 5, the sum value of



2852 St=YEXEIBD =X M6 M112=(88.11)

2-D window sum,($,;) is initialized in (1) and 1-D
sum value in each PE is shifted and combined into
sumyp(i, /) lw/2| times in (2) and (3). And then
sumyy(i,7) is thresholded by (w?+1)/2 to obtain
2-D median output in the binary domain. In Step 6,
PE(i,/) examines the level whose output is 1 and the
next greater output is 0 from med[11(i,7), med[2)(i, /).
-, med M—1)(i, /) to get 2-D median output in the
integer domain.

5. Performance Analysis

In this section, we evaluate the performance of
our RMESH algorithms by comparing their time
complexities with those of algorithms on mesh-
connected computer. It is possible to compare time
complexity on RMESH with that on mesh because
the reconfigurable mesh architecture just injects
switches with circuit-switching capability into every
PE of mesh. This is reasonable in the light of
experiments with the YUPPIE[2] and the PPA[18].

Before computing time complexities of two para-
llel models, let us consider the median filtering on a
single processor. In 1-D signal, the median filter in
the integer domain is computed in Xwlogw) time
within a window, which is obtained by sorting the
window samples and selecting the median value. So
the total time complexity is X Nwlogw), where N is
the input signal length. In 2-D image, the time
complexity of the median filter is computed equally
and it is O(Nwllogw?), where image size is NxN
and window size is wxw.

Now, let us consider the time complexities of our
RMESH algorithms. In 1-D signal, Step 1 and Step
3 of Algorithm 1 can be done in O(M) time for
M-level signal and Step 2 applies Algorithm 2 at
each level. So we need to check the time of Algo-
rithm 2. In Algorithm 2, Step 2 and Step 3 are easily
obtained in O(w) time respectively and also Step 6
can be obtained in same time, so that the time
complexity of Algorithm 2 is O(w). Consequently,

Step 2 of Algorithm 1 is done in O(Mw) and the
time complexity of 1-D RMESH algorithm is
Oo(M) + O(Mw) + (M) =~ O(Mw). In 2-D image, Step
1 of Algorithm 3 is done in O(M) time and Step 3
is in O(Mw) time because the time complexity of
Algorithm 2 is O(w). And Step 5 is computed in
O(M|w/2]) time and Step 6 is in O(M) time. So
the time complexity of 2-D RMESH algorithm is
O(M) + O(Mw)+ (M| w/2] )+ O0(M) = O(Mw).

Finally, let us compute the time complexity on
mesh. 1-D signal is mapped onto the row 0 of mesh
such that PE(i) contains M-valued signal X(# and
2-D image is mapped on NxN mesh such that
PE(i, /) corresponds to the image pixel X(i,7). The
parallel algorithm on mesh is similar to our RMESH
algorithm except for data routing technique. In 1-D
signal, Step 2, Step 3 and Step 5 of Algorithm 2 is
done in Ol w/2]) time respectively because maxi-
mum routing distance between PEs is | w/2] . But,
in Step 6, X lw/2]) time is needed to update next
value n(i) at each loop as compared with O(1) time
on RMESH. Therefore, Algorithm 2 is done in
O(w?) time and the parallel algorithm on mesh is
computed in  O(M)+ X Mu?) + (M) = X Mu?) time.
In 2-D image, the time complexity is O(M)+ O(Mu?)
+OM Lwf2] )+ OM) ~ O(MuP).

The time complexities of various models are sum-
marized in Table 2. Although the time complexities
on mesh architecture are considerably improved over
the complexities on a single processor because N is
even larger than both M and w, it is clear that our
RMESH algorithms significantly outperform mesh
algorithms.

{Table 2> Time complexities

Model 1-D signal 2-D image

Single 2
processor O Nwlog w) O Nwlog u?)
arc}rxrilet;l;ure A Mw') X M)
architecrure | OV ot




6. Conclusion

Median filter is included in the class of stack
filters which have the principle of threshold decom-
position, stacking property, and binary processing
based on PBF. So the median filter can be imple-
mented in the binary domain by using the properties
of the stack filter. And the binary domain filtering
makes it possible to implement in VLSL In this
paper, we have developed the RMESH algorithms
for median filtering of 1-D signal and 2-D image,
which are suitable for VLSI implementation. In addi-
tion, we have proved that the algorithmic time com-
plexities on RMESH were far better than those on
mesh. The fact shows that RMESH architecture has
an excellent performance in comparison with mesh
architecture.
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