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Some Properties on Automata and Their Input Semigroups

Chin Hong Park! and Chun Jn Lee'"

ABSTRACT

The purpose of this paper is to develope for input semigroups the notions of radical and
primitiveness similar to those which have been developed for rings and of transitiveness.
Moreover, some of thier properties anr investigated.

1. Introduction and Preliminaries

We will start with the definition of an
automaton.

DEFINITION 1.1.

(1) An automaton, A=(M, S, &), is a
triple where M is a nonempty set(the set
of states), S is a nonempty semigroup
(the set of inputs), & is a function{calied
the state transition function) mapping M
x S into M. Also, we shall assume the
useful property that 8(m, st)=8(3(m, s),
t) for all st, €S and me M.

NOTE An automaton A means a tripe(M, S, 8)
and M doss not mean an automaton But the
attribute “audomalon” will be sometimes used for M.

NOTATION. For convenience we will denote &

(m, s) as ms.

AP e o Yas
1 Adedaw dxpAqbest Fap
=4 19940d 349 17, AAEE 11994 94 94

t
t

(2) A subautomaion of M is a non-void
subset H of M such that HSCH.

(3) An automaton, A=(M, S, &), is called
irreducible if MSZF(M) and M has no
non-trivial subautomata where F{M)={me
M:ms=m for all s<S}.

(4) A right congruence of a semigroup S is
called modular if there is an element e of S
such that (ess)ea for all s&S. The
element e is called a left idenhity for a.

DEFINITION 1.2

Llet A=(M, S 81) and B=(N, S, 8s) be

automata.

(1) A mapping f:A—B(or M—»N) is an &
homomorphism(or S-map or S-operation
preserving) if f(ms)=f(m)s for all meM
and s&S. f is called an S-isomorphism if
it is bijective and an S-homomorphism. f
is called an S-homomorphism.

(2) An automaton A is cydic if M=mS for
some mEM. Also, m is called a generator.
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(3) An automaton A is strongly connecled
if every element of M is a generator.

(4) An automaton A is aebdian if m(st)=m(is)
for all meM and s, t€S

(5) S is M-abelian f m(aby=m(ba) for all m
€M and a, beS.

(6) An automaton A is perfect ff A is
strongly connected and S is M-abelian.

(7) T..M—M is called a right translation if T
Am)=ma for all meM where a<S.

(8) We define a congruence uyCSXS on S
through (a, bye weT,=T,

(9) M is faithful iff wuy=0(the
relation).

(10) We define a right congruence uv on S by
(gb) Ep>T(m)=Tim) for a bES
where meM.

identity

(11) Let a be a right congruence on S. For
any s€S we define a relation as on S by
(a, b)<as if and only if (sz, sb)Ea

LEMMA 13

(1) tye =Nye,at if @ is a right congruence on
S. We note that if @ is a modular right
congruence on S, gy, =N ca0<a

(2) [o] nves u= Nues [alwy for aES.

(3) Let M and N be two automata. If fiM
—N is an S-isomorphism, then zu= 1.

Proof.

For(1), let M be an automaton and m&M. Then
for g, bE S (g b)Ep>ma=mb define a right
congruence on S.

(@, b)Etya = "Lpesn tha (8, D)E gy, for all [
J].ES/a>[t] @a=[1]. be>(ta, th)Ea for all &S
(a, b)Eat for all teS>(q, b)E N sat. For(2)
x€[a]n vesa (2% O)E "yesa (% a)Euy for all
MeISxENyers [a] . For (3), (a, b)Euy <>ma

=mb for all m& M= fma)=Ff(mb)=f(m)a=f(m
)b for all meM.

Now for any nEN, n=f(m) for some meM.
Hence na=nb implies (q, b)=um. Also it is easy
for us to check the converse.

The following proposition is a generalization for
a new right congruence induced by right
congruences on S and right ideals of S. This
follows from Oehmke [6].

PROPOSITION 14.

et A be an indexes set. Let 7, be a right
congruence on S and let I, be a right ideal of S
for each a= A. We define a relation w=w( N4
Tay Neea L as follow:
(q, HEwe(a, HE Neea 1. OF (@ B)ENgea L.
Then ® is a right congruence on § with N4

L fw.
PROPOSITION 1.5.

Let A be an indexes set. Let la be an ideal of
S and w(la) be a congruence induced by Ila for
each a€A. If "wen I, ={0}, then "en @ (L )=0.

where O, means the identity relation.
Proof.

For each (a, B)E"cs w(l,) it its enough to
show that a=b. Now, (q, b)cw(la) for all a=A.
This means that a=b or a, b€la for all a=A.
The latter case inplies that a, b€ ., L ={0}.

Hence a=5

PROPOSITION 1.6.

let G be a non-trivial group and let H be a
proper subgroup of G. We define the relation «
on G by

(ab)sasab'EH,
Let L(a)={all left identities of a}. Then



(1) HCL(a);

(2) @ 15 a modular right congruence on G
with a#1c where 1c means the universal
relation;

(3) t(L(a))Ca where t(L(a))=Supeis (t)
and r(u)=the intersection of all modular
right congruences with respect to u;

Proof.

(1) and (2) are clear. (3) comes from Seidel
[4]

LEMMA 1.7.

Let M be an automaton and let H and K be
subsets of M. Let A be a subset of S. if KA=
H, then ACK 'H={seS | KsCH}

DEFINITION 1.8.

(1) A right congruence r on S is said to be
modular with respect to a=S if and only
if (s, as)E t for all s€S.

(2) An element a=S is a right q-elemeni(or
a right quasi- regudar element) if 7(a)=1c
or equivalent to @"s=a”t for some m, n>
0 and all s t&S where r(a)=the
intersection of all modular right
congruences with respect to a.

(3) An element ¢=S is an XS)—potent if a"
e(S) for some n>1 where O(S)={all
left zero elements in S}.

(4) An element ¢S is an eigenllich ((S)-
polent if(as)"eX(S) for some n=1 and
for all s€S.

(5) A set M is called an aulomaton with null
(0) if M is an automaton and F{M)={0}
where 0€S.

NOTE :
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with each automaton M we associate the set
M,={s€S | mss;=m implies m& F(M) where me
M, s,£8'} where S'=SU{1)}.

(6) We define radoS= Nyes, Ko« Sk Or radS=
MNues, Mo where Sy is the representation
of S generated by an automaton M and
IS;={all irreducible automata with null(0)
where 0S}.

NOTATION.

XS) ={all g-elements in S}.

E(S) ={all idempotent elements in S}.

XS) ={all left zero elements in S}.

R(S) ={a€S | (as, s)=a for all s in S implies
a=1, where a is a night congruence on S).

XS)p ={all O(S)-potent elements in S}.

The following proposition gives us a relation-
ship among these.

PROPOSITION 1.9.
(1) ASNES)CHS)THS)CXS).
(2) ASHNES)=KS) if R(S)=8.

Proof.

For(l), this is clear from Seidel[4]. For(2),
We have O(S)=FE(S) if R(S)=S and also, we
have (XS)C&S) from Seidel[4].

PROPOSITION 1.10.
Let N(S)={all eigentlich (XS)-potent elements
in S}. Then we have

W F %] = {(NS)} and F| %} = {My);
@ i) -t

Proof.

We note that FIM/Hy={H} f FIM)CH#¢
where H 1s a noon-void subautomaton of an
automation M and also we know that radeS=MN(



342 BRFTACIZBEE =2X M1 H3E (94 9)

S). Since F(S)=0(S), we have F(S)=(S)Cmd,
S=N(S)TMe.

PROPOSITION 1.11.

Let 0€S and S'=SU{1}.

Let 2={all right ideals I, in S, a=A}. Let I
={all right congruences on S}. We define the
relation @, (o,) on S by (g, b)E w, (0, Y= (as,
bs))E0, for all €S where o, =1, xI, U(S—L)
X (S—1,). then

(1) there exists a function F:2—1 given by

ML )=w, (o.);

(2) Fis1-1.

Proof.

For(1), from proposition 15 of Seidel [4] there
exists a unique maximal right congruence w, (o,
) for each right ideal I, in S. Hence it holds.
For(2), To prove that F is 1—1, it is enough to
show that F(L )=F(;) inplies I, =I,. Also, we
note that by proposition 15 if Seidel[4] we have w,
(0)=Sup{re1 | L =[0]}.

Since wy, (0.) = wy (04) and these are in
II, we have wy (0,)=r¢ with I, =[O]r, for some
ro in IT and wy (04)=n with [; =[O]r, for some
riin IL Hence I =1;.

COROLLARY 1.11.1.

|@| < || where | | means the cardinality.

PROPOSITION 1.12.

Let 0=S and let « be a right congruence on S
. Let A([0L,) on S and let @y (. ) be the right
congruence induced by [0], on S and let
@ (0.) be the unique maximal right congruence
induced by o, wth mpect to[0],.Then ve have
Al0L) € a C wyp (o).

Proof.

For the first part it is clear since (x, ¥)
belongs to A([O].) if and only if x=y or z, y=
(0l..

For the second part we note that (a, b) Saw,
(0, )=(as, bs)Eo, for alls) in S'. So it enought to
show that for each (x, y)E« for all s; in S.

(1) suppose (%, 0)a. Then (x, y)Eo,. For (3
0)Ea implies x, ¥ €[0],. Since ¢ is a right
congruence on S, we have (x5, O)Ea for all s
in S. This implies that (xs, 3s)Ea, for allsin S
. For (35, O)Ea implies xs, 3=[0],. Hence (x,
¥Ea, and (x5 yw)Eq, for al s in S.

Le., we have (xs;, 35,)E ¢, for all s, in S'.

(i) suppose (x, 0)¢a. Then (x, y)¢o, For

(3 0)¢a implies x, y=[0), and z, y=S—/0]..
Hence we have (x, y)=(S—[0], ) x(5—~[0), )Cao,.
Next, if (x5, O)Ec for all s in S,
(xs, ys)Eo0, from (i). So, we have done. Now,
suppose (xs, 0)&«a for all s in S. Then (xs, »s)
€0, For (35, 0)éa implies xs, &[0], and xs,
weES—[0),. Hence (x, 3 and (xs, ) are
contained in ¢, for all s in S. This means that
(xsy ys1)Eo0, for all s in S\

2. Radical and Maximality

DEFINITION 2.1.

(1) An M is called iolally
trreducible if MSZFMM) and M has no
non-trivial homomorphism.

(2) An automaton M is called stricly cydic if M
=moS for some myEM.

automaton

LEMMA 2.2.
Let @ and # be modular right congruences on S
. if S/a and S/f are isomorphic and a is



maximal, then £ is maximal.
Proof.

We nmnote that S/ has a non-trivial
homomorphism if and only if there exists a right
congruence @ on S such that a<w<1. Suppose
that # is not maximal. Then there exists a
modular right congruence # on S with A<u<1.
This means that S/4 has a
homomorphism and also this means that S/a has
a non-trivial homomrphism. Therefore there

non-trivial

exists a right congruence w, on S with a<w<1.
Also, @, 1s a modular since « 15 a modular. It is
impossible since « is maximal.

PROPOSITION 2.3.

Let M be an autematon with | M| =2 and
no homomorphism except for isomorphism.

Suppose (S)#¢. Then M is a totaly
irreducible if and only if M is strictly cyclic.

Proof.

(=) It is clear. (<) Suppose M is strictly
cyclic. Then M and S/a are isomorphic where a
is a modular right congruence on S. Now, from
Hoehnke[ 5] there exists a maximal modular right
congruence B with ¢Cp. Also, from aCpg there is
an onto-homomorphism from S/a to S/8 But
by the assumption S/a and S/B are isomorphic.
Hence « i1s maximal from Lemma 22, This
means that M is totally irreducible.

NOTATION./, means the identical relation and
1. means the unversal relation. TA={all totally
irreductble automata}.

DEFINITION 24.

(1) We define rad SzﬂMels .
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(2) S is called radical- free if rad S=1Ir.

The following statement is a similar one of a
solvable group G. Let N be a normal subgroup
of G. We note that F is solvable if and only if NV
and G/N are solvable.

PROPOSITION 25.

Let [ be an ideal of S with ICKerSy. Then S
is radical- free if and only if I and S/N are
radical-free.

Proof.

(=) We note that rad I=IxIN rad S from
Seidel[4]. Since rad S=1Ir, we have rad I=1Ir

Also, from Seidelf 4] we note that for every ideal
ICKerSy M is an S-automaton if end only if M
is an S/I automaton. Let ISI be the set of all
irreducible S/I-automata. Then we have rad S//
="vest (SN ="yes tu(S)=red S=1r.

(<) It is clear from Seidel[4].

DEFINITION 26.

(1) We define Rad S= DMETA Mg
(2) S is O— rudical free if radoS={0}.

PROPOSITION 2.7.

(1) radeSxradeS C rad S C Rad S;
(2) Let O£S If S is radical-free, then S is O
~radical free.

Proof.

For(1), since rad,S is a congruence ideal with
respect to rad S radeS=[ao)w s for some e rad,
S. Now, for each (x, y)EradsSxradsS we have
x, y=radS. So, (x, a)Emad S and (3 w)E rad
S.

Hence we have (x, ¥) rad S. For the second
part it comes from Hoehnke [5]. For (2) we
note that we can replace the condition =S by
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red, S#¢ since rad S=1Ir and rad, S#¢ implies
that there exist a null element 0 in S from Seidel
(4]. Hence it is clear.
We note that any finitely generated semigroup
S contains at least one maximal subsemigroup.
The following proposition is easy to check it
using Zorn’s Lemma.

PROPOSITION 2.

Let A be a non-empty subset of S. Suppose
there exist an ideal I of S such that INA=4¢.

Let W={J|J is ideal of S with JNA =¢).
Then there exists a maximal subautomaton K
containing H.

PROPOSITION 2.9.

Let M be an automaton with MS=M. If H is
an subautomaton of M with H# M, there exsts
a maximal subautomaton K containing H.

Proof.

Let W={L | L is a proper subautomaton of M
with HCL<M) and partially order W by set
inclusion(ie., Li<L, if and only if LiCL,). We
claim that W is a non-empty induxtively ordered
set. To prove this,(1) W#¢ It is clear since H
eW. (2)W is inductively ordered : Let T be any
non-empty totally ordered subset of W. To show
that T has an upper bound in W, let U=U_r L.
Then (a)U is a subautomaton of M(ie, USCU).
To show this, choose any x& US. Then x=ys for
some y=U and s=8. y= U implies y=L1 for some
LeT. Hence x=w<ScLcU. (b) HCUCMU
#M)(ie, UCW). Now, HC U is clear. To show
that U#M, suppose U=M. Then US=MS=M.
For each m&M, me US. This implies meLS
for some LeT. So, meLSC L. Hence MC L and
M=L. 1t is impossible. (¢c) U has an upper

bound for T(it is clear). Hence By Zorn’s lemma
W has a maximal element K in W.

COROLLARY 29.1.

Let M be a strictly cyclic automaton. If His a
subautomaton of M with H# M, then there exists
a maximal subautomaton K containing H.

COROLLARY 2.9.2.

Let M be an automaton with F{IM)=M. If H
is a subautomaton of M with H#M, then there
exists a maximal subautomaton K containing H.

Proof.
F(M)=M implies MS=M.
COROLLARY 29.3.

Let M be an irreducible (or totally irreducible)
automaton. If H is a subautomaton of M with
H#M, then there exists a maximal subautomaton

K containing H.
Proof.

The fact that M is totally irreducible implies that
M is irreducible and also this impliees MS=M.

PROPOSOTION 2.10.

et 0=S and let @ be « maximal right
congruence on S, Then S/[0], is an irreducible S
-automaton<>S# Ker S,

Proof.

Let I be a maximal right ideal of S. Then
from Hoehnke[5] S/I is an irreducible S-
automaton if and only if S#S7'I (=):[0], is a
maximal right ideal since a is a maximal right
congruence on S, This implies that S#S 0], =
(S/a)"{[0) }=Ker S,



(<) 1t is clear since S#S 0], and [0], is
a maximal right ideal of S.

DEFINITION 2.11.

Let M be an S-automaton. M 1s cyclic if M=
mSU {m} for some in M,

NOTATION. M*={all non-generators in M}
where M is cyclic.

PROPOSITION 2.12.

Let be a right congruence on S. Let S/a be an
S-automaton with F(S/a@)=¢. Then S/a is an
rreducible S-automaton if and only if a is a
modular right congruence.

Proof.

S/a is a strictly cyclic S-automaton since S/a
is irreducible. This means that a is modular.

Conversely, we assume that « is a modular
right congruence on S, Then S/« is strictly cyclic.
This means that (S/a)*=¢ since F(S/a)=¢.
Hence it holds.

3. Faithfulness, Primitveness and
transitiveness.

DEFINITION 3.1.

Let 0S8 and let M be an S-automaton.

(1) M is faithful if zy=I where O&S.

(2) M is O-faithful f Ker Sy=M T10]={0}.

(3) S i1s O-primtive if S has an O-faithful
irreducible S-automaton.

(4) Let P be an ideal of S. P is O-primitive if
S/P is O-primitive semigroup and S#P.

PROPOSITION 3.2.

let OS. If ¢ is a maximal modular right
congruence, then Ker Sg,
of S

is an O-primitive ideal
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Proof.

By the asumption [0], is a maximal modualr
right ideal of S. This means that S7'[0], is an 0
-primitive ideal by Hoehnke[3]. Hence we have
S§[0). =(S/a) {[0). }=Ker S,a .

DEFINITION 3.3.

Let M be an S~automaton.

(1) M is 2-minimal if |M| =2 and M has
the only trivial S-auotmatorn.

(2) Mis 2-null if | M| =2 and | MS| =1.

(3) M is O-transitive if M is strictly cychc
with |'M| =2 and | (M) | =1

LEMMA 34.

Let M be an S-automaton. If M is 2-minimal
reducible, then M is etther 2-null or | M| =]
MS| =] FRM)| =2

PROPOSITION 3.5.

Let M be an 2-minimal S-automaton with | ¥
(M) | =1. Then

(1) If MSZ (M), then M is O-transitive.

(2) ¥ M is reducible, then M is 2-null.

Proof.

(1) MSZFA(M) means that M is irreducible.
This means that M is strictly cyclic. Hence
it holds.

(2) It is clear from lemma 34 and | FIM) |
=1.

COROLLARY 35.1.

Let M be an 2-minimal S-automaton with | F
(M) | =1. If MS¢ZF(M) or M 15 reducible, then
M, XM) and ¢ are the only invariant subsets of
M.



346 BIHDMEISBEE =2X H12 H3F (94 9}

Proof.
It comes from Tully[1] and proposition 3.5.
DEFINITION 3.6.

(1) S is transitive if S is strictly cyclic with O
(S)=¢.

(2) S is O-transitive if S is strictly cyclic with
| S| =2 and XS)=4.

(3) S is h-primitive if S has a faithful
irreducible S-automaton M.

(4) S is t-primitive if I, and 1, are the only
right conguence on S.

We have the following lemma a from Tully[1].

LEMMA 3.7.

(1) If Sis O-transitive, then | O(S) | =1 and
S, S) and ¢ are the only Invariant
subsets of S.

(2) If Sis t-primitive with | S| =3, then S
1s either (-transitive or transitive,

PROPOSITION 3.8.

If Sis t-primitive with | S| =3 and E(S)Z0
(S), then S is an h-primitive.

Proof.

By lemma 37, S is either O-transitive or
transitivee. To prove that S is a faithful
irreducible S-automaton, (1) assume that S is 0-
transitive. Then #s=I, from the fact that for
each a In S, & 15 a right congruence on S and .
=] or 1,. We will show that S is irreducible.
(i) SSEF(S)=KS) since | XS) | =1 by lemma
3.7. (i) S has the only trivial S-automaton since
S, &(S) and ¢ are the only invariant subsets of
S by lemma 3.7, (2) assume that S is transitive,

Then g, =1, from the case (1). To show that
S is irreducible, we know that if S is transitive,

then S is strictly cyclic with F{S)=&S)=¢. This
implies that S 1s irreducible since S*=¢ from
Hoehnke[5].

DEFINITION 3.9.

Let M be an S-automaton. M is strongly
connected(or transitive) if M is strictly cyclic
with F{M)=¢(i.e, every element of M is a strict
generator).

We have the
combining proposition 2.1
theorem 3 of Oehmke[2].

following proposition by
of Tully(1] with

PROPOSITION 3.10.

Let M be a strictly cyclic S-automaton. Then
the following statements are equivalent:

1
) M is strongly connected(or transitive);

(2) S/p is strongly connected for every m in M,

(3) For every obES, (ac, b)=gy, for some ¢
in § and each m in M,

(4) any p,-class N any right ideal of S#¢

for every m in M.
Proof.

(1)=(2):By the definition we have M=mS for
every m in M. Also, we have that mS and S/u,
are isomorphic from theorem 3 of Oehmke[2].
Hence it holds. (1)<=(2): S/un,~mS=M for some
m&EM. The proofs that (2), (3) and (4) are
equivalent come from Tully[1].

PROPOSITION 3.11.

Let 08

(1) f S is O-primitive, then S is CO-radical
free,

(2) f S is h-primitive, then S is radical free.

(3) f S s O-primitive or h-primitive, then S
is O-radical free.



Proof.

(1) and (2) come from the definitions. (3) is
clear from proposition 2.7.
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