KIPS Tr. Comp. and Comm. Sys.
Vol.6, No.5 pp.219~230 plSSN: 2287-5891

GPGPU At# Z& 7HM

o

o
b=

ot £ KAAZE 718 2= AAEE 7™ 219

https://doi.org/10.3745/KTCCS.2017.6.5.219

A Novel Cooperative Warp and Thread Block Scheduling Technique for

Improving the GPGPU Resource Utilization

T

Do Cong Thuan' - Yong Choi™ - Jong Myon Kim™ - Cheol Hong Kim

ABSTRACT

General-Purpose Graphics Processing Units (GPGPUs) build massively parallel architecture and apply multithreading technology to
explore parallelism. By using programming models like CUDA, and OpenCL, GPGPUs are becoming the best in exploiting plentiful
thread-level parallelism caused by parallel applications. Unfortunately, modern GPGPU cannot efficiently utilize its available hardware
resources for numerous general-purpose applications. One of the primary reasons is the inefficiency of existing warp/thread block
schedulers in hiding long latency instructions, resulting in lost opportunity to improve the performance. This paper studies the effects
of hardware thread scheduling policy on GPGPU performance. We propose a novel warp scheduling policy that can alleviate the
drawbacks of the traditional round-robin policy. The proposed warp scheduler first classifies the warps of a thread block into two
groups, warps with long latency and warps with short latency and then schedules the warps with long latency before the warps with
short latency. Furthermore, to support the proposed warp scheduler, we also propose a supplemental technique that can dynamically
reduce the number of streaming multiprocessors to which will be assigned thread blocks when encountering a high contention degree
at the memory and interconnection network. Based on our experiments on a 15-streaming multiprocessor GPGPU platform, the
proposed warp scheduling policy provides an average IPC improvement of 7.5% over the baseline round-robin warp scheduling policy.
This paper also shows that the GPGPU performance can be improved by approximately 89% on average when the two proposed
techniques are combined.

Keywords : GPGPU, Parallelism, Performance, Warp Scheduling, Resource Utilization

o o ol H
GPGPU Al 2& /MAds A £F AR 7
o] v =
Hz =AIE" 714
Do Cong Thuan' - & &"-Z4 &w".2 88"
e o
Welzdg 71gol 44 GPGPUE U ¥ A5 /e doleg ndoz Asty Wwe Y2ALe #2412 F Ak

CUDA, OpenCL 53 2& Zzad® mdg $ga 2= a4 Ads §d ¢8xeasle] u% ¥d S0l shsait. s,
GPGPUT 98 %7e) $822E £ARo] ol Wl SEdlo] AUSE TANR N8R RARS TYE Holx A, ol
GPGPUOIA ARG 7)e] flz/2d = B8 2AZe7) e JeAziel 21 gaold Anald oA ¥agels] wiolr. o
o e BARE AL ol L RANE GRGPU AL HEEE AU A AR AT 242 UL Ak o, A

QatE YE 2AEY 7ML sdE B8 2 F 2 vEy FIAdE %49} e MR JIAEE 7 YEES TR
&2 MR HIZAZEE 4 g2 oA dgetal g viRe JIARE 7R 92s use 29ste] Agch =g Mo o
HoAAYeA g2 Aol BAYS W FHor ~EHY HEHZZAAM F£5 7‘*%1?4 Az 2AEE BHHOR AMEE F 9dE
ZIWE Aekeit). AP A mE 15700 ~EY WEIZRAAE 717 GI’GPU REANA Atd AL 2AEY IS 71 e
=20 = 2AEY /Y vuste] it 75%9) A4F(IPC)o] ddHs AT & W} 3 AjkE F e TS FA A 8aa
& Aole HH 89%2) ATIPC) s Hth

719=: GPGPU, HE4Y, 45, 9= AAEE, 12 &8

1517 Aol e]ato]
it Eas e At AR TR g

0 3 9 AgEte AT R vk Manuscript Received : November 1, 2016
2 3 o Ayt A]Z]—?’dﬁ; B 2et uialaly Accepted : January 24, 2017
A 3] o gatdiga AV e wg = Corresponding Author : Cheol Hong Kim(chkim22@chonnam.ac.kr)

220 ZEMEISSl=2Al/EFEH H S48 AAH HMed M5=(2017. 5)

1. Introduction

Modern Graphics Processing Units (GPUs) have the
ability in quickly performing context-switching and
massive multithreading. Moreover, graphics hardware is
fast and quickly accelerating due to different fabrication
technology from the Central Processing Units (CPUs)
[21]. Consequently, utilizing GPUs for handling general
purpose computation has gained more and more attention.
This leads GPU to become one of the most attractive
computing platforms for executing general purpose
applications. For such parallel applications, it was proven
that GPUs achieve much higher performance than CPUs
due to the exploitation of a large number of streaming
multiprocessors (SMs) and gigabytes of high memory
bandwidth [1].

With new parallel programing models such as CUDA [2,
3], OpenCL [4], GPGPU applications are created with work
abstractions in terms of smaller work units, called thread
blocks (or Cooperative Thread Arrays - CTAs). A thread
block is a collection of threads grouped to form a warp or
wavefront. GPGPU architecture is based on the Single
Instruction Multiple Thread (SIMT) execution model. This
architecture allows the Single Instruction Multiple Data
(SIMD) compute units (also known as shader core) of a
GPGPU to execute threads in a warp together, thereby
amortizing the instruction fetch and decode overhead. In
addition, GPGPU architecture provides synchronization
guarantee within a thread block and assumes that no
dependencies exist across thread blocks, helping in relaxing
execution order of thread blocks. This leads to a remarkable
increase in parallelism and more effective usage of
streaming multiprocessors.

As GPGPU architectures are designed with a focus on
high throughput computing, they use non-speculative
in-order processor pipelines as a tradeoff for a large
number of computational units. Consequently, reducing the
overhead of long latency operations is one of the most
crucial issues to maximize GPU’s hardware resources.
GPGPUSs, therefore, rely on fast context-switching and a
large number of concurrent warps for hiding latency
(whenever the execution of a warp is stalled, it can be
swapped out and another warp can be swapped in for
immediate execution to increase resource utilization without
any penalty). To ensure the execution pipeline is kept active
in the presence of long latency operations, a hardware warp
scheduler must decide in each cycle which of the multiple
active warps will be executed next. However, although high
thread-level parallelism (TLP) can be theoretically achieved,

GPGPU streaming multiprocessors suffer from periods of
inactive times that results in underutilization of hardware
resources [5, 6].

Warp schedulers play a key role in increasing GPU’s
hardware resource utilization. The round-robin warp
scheduling policy, which is commonly-used, assigns the
same priority to all warps. Prior research work [6, 7, 22],
showed that the
scheduling fails to hide long memory fetch latencies, that

however, traditional round-robin
are primarily caused by limited off-chip DRAM bandwidth,
contributing substantially to the underutilization of GPGPU
streaming multiprocessors. Yet, such round-robin fashion
also wastes warp/thread parallelism for hiding short latency
instructions. On the other hand, when all warps execute a
global memory load with long latency, round-robin
scheduling cannot hide such long latency loads and causes
stall in each streaming multiprocessor.

In this paper, we first propose a new warp scheduling
policy that can alleviate the drawbacks of the baseline
scheduling policy. We want to introduce a different
approach in the effectively using warp parallelism to
improve the overall performance of GPGPUs. The goal of
the proposed scheduling is to overlap long latency
instructions by efficiently utilizing the “warp/thread
parallelism”. The proposed warp scheduling algorithm
enables the hardware scheduler to identify the warps in a
thread block which cause a large number of stall cycles so
that such warps can be assigned higher priority than the
remaining warps in the thread block. By doing this, such
warps can overlap latencies each other and the thread
parallelism can be saved to use later compute region when
is not sufficient to overlap subsequent long latencies.
Furthermore, in order to support the proposed warp
scheduler, we also propose a mechanism that can dynamically
reduce the number of streaming multiprocessors in a
GPGPU to which will be assigned thread blocks when
encountering a high contention degree of memory bandwidth
and interconnection network.

We make the following contributions: (1) we compre-
hensively rethought of warp scheduling in terms of effective
warp parallelism usage, considered interaction between
warp and thread block scheduling, (2) finally, designed and
evaluated a new hardware warp/ thread block scheduler.

The rest of this paper is organized as follows. Section 2
discusses related work, Section 3 briefly describes GPGPU
architecture, Section 4 presents our proposed scheduling
policy, Section 5 describes methodology, Section 6 presents
our results, and Section 7 concludes the paper.

GPGPU K& =& 7HME 21Tt 28 RIAAIZE 718t I AHEE 71 221
[N]
—|| ‘I—T—I‘ e | EEnR
I: —— ‘I L l‘ ‘l l‘
CTA |: |: X Memory Partition
. SIMTs Constant =
Aad - [i M Cache g r|Memory Partition
[- A E i |::> Texture © r{ Memory Partition
: |:> = H yTpm\ Cache E - L2 Cach
B - o L ache
ﬁ“ ﬁ‘ﬂ % E Warp Scheduler 0 | LD/ST Units | |:i> Register <:\> ° <}:> 1 Portion
> i Q
i [—vee | SF Units | File = 1 ¢
CTA Scheduler [8
H || : <l L1 Data o) : QFEChIR
HH Cache = Y| cranner
L Warp Scheduler 1 SIMTs SM]

Fig. 1. Baseline GPGPU Architecture

2. Related Work

Prior works have introduced various techniques to
improve GPGPU performance or increase computational
hardware resources. For example, Fung et al. [15] focused
on the impact of branch divergence on GPGPU performance
for general-purpose applications. They proposed a com-
bination of threads from different warps to address the
hardware underutilization caused by branch divergence. Lee
[16] proposed a prefetching mechanism for the presence of
many threads in-flight. They also proposed the adaptive
throttling to solve the performance degradation even with
100% prefetching accuracy. Some recent research works on
GPGPUs [9-12] mostly aimed on optimizing parallel applications
to take advantage of the special architecture of GPGPUs.

With the final goal of improving GPGPU performance,
warp scheduling has received much attention. A number of
scheduling policies have been proposed to increase GPGPU
hardware resource utilization. Narasiman et al. [6] proposed
a two-level warp scheduling mechanism, where warps are
separated into active set and pending set, that can increase
the utilization of streaming multiprocessors by creating
larger warps and employing a two-level warp scheduling
scheme. Meanwhile, Gebhart et al. [13] also proposed a
two-level warp scheduling technique, but the primary
purpose of their approach is energy reduction. Cache-
conscious warp scheduling proposed by Rogers et al. [14] is
a family of static and dynamic greedy scheduling approaches
to improve intra-warp data locality. Their work improves
L1 hit rates for cache-sensitive applications. Jog et al. [30]
presented several warp scheduling schemes that can be
aware of a subset of thread blocks to reduce the impact of
long memory latencies. Lee et al. [31] also tried to alleviate

the warp criticality problem by a criticality-aware warp
acceleration technique (CAWA).

At the level of thread blocks, round-robin is the most
common policy that has been applied to modern GPGPU
architectures. Previous works [5, 8] pointed out the drawback
of the existing thread block schedulers that maximizing the
number of thread blocks assigned to a streaming multi—
processor is not always effective -1i.e. increasing the number
of thread blocks does not necessarily improve performance.
Some other works also suggest that throttling the number
of thread blocks in a system can benefit performance.
Bakhola et al. [7] demonstrated that limiting the number of
thread blocks assigned to a streaming multiprocessor can
reduce the contention for the memory system.

Guz et al. [18] presented an analytical model that
quantifies the “performance valley” where too many threads
can degrade performance because of the resource contention.
Cheng et al. [19] also introduced a thread throttling scheme
to reduce memory latency in multi-thread CPU systems.
They proposed an analytical model and memory task limit
throttling mechanism to limit thread interference in the
memory stage. Their model relies on a streaming pro-
gramming language that decomposes applications into
separate tasks for computation and memory and then
scheduling tasks at this granularity.

A number of recent works have explored cache bypassing,
where the memory requests can selectively bypass the
cache, for GPUs. Jia et al. [32] proposed a hardware structure
called memory request prioritization buffer (MRPB), which
employs request reordering and cache bypassing, to avoid a
system bhottleneck in GPU caches. Meanwhile, Xie et al. [33]
introduced a coordinated static and dynamic cache
bypassing to boost performance. At compile-time, the global

222 SEMEISSl=2Al/EFEH H S48 AAH HMed M5=(2017. 5)

loads with strong preferences are identified for caching or
bypassing through profiling. The rest of global loads are
bypassed for a fraction of threads.

In evaluation of scheduling and prefetching within
GPGPUs, Jog et al. [17] used a thread block allocation
strategy where consecutive thread blocks were assigned to
the same streaming multiprocessor in their baseline archi-
tecture. Recent work from Kayiran et al. [5] dynamically
estimated the amount of thread-level parallelism that would
improve GPGU performance by reducing the cache and
DRAM contention.

3. Background

In this section, we provide a brief background on GPGPU
architecture and typically on scheduling strategies. Further
details on these can be found in [14, 15, 23, 24].

Fig. 1 illustrates the architecture of a contemporary
GPGPU, which is similar in nature to NVIDIA’s Fermi
design. The GPGPU consists of many streaming multi—
processors (also called shader cores), with each typically
having “single-instruction, multiple-threads” lanes of 8 to
32. The target GPGPU architecture used in this work
consists of 15 streaming multiprocessors each with an
SIMT width of 32 that can collectively issue up to 32
instructions per cycle (IPC), one instruction from each of 32
threads. These streaming multiprocessors are connected by
an interconnection network. The baseline GPGPU has
multiple levels of memory hierarchies. The global memory
(also called device memory) located off-chip with long
latency can be accessed by all of the thread blocks in a
grid. Each memory controller is associated with a slice of
shared L2 cache bank. An L2 cache bank with a memory
controller is defined as a memory partition. In the baseline
model, the programmers partition the per-SM on-chip
storage into programmer-controlled shared memory and
hardware-managed data L1 cache. The private L1 data
caches of streaming multiprocessors have short latency and
are accessible from all of the threads within a thread block.
Furthermore, each streaming multiprocessor is equipped a
read-only texture, constant cache and low-latency shared
memory. For supporting parallel computing, GPGPUs have
vast on-chip register file resources for each streaming
multiprocessor in order to accommodate a large number of
set of threads. Similar to CPUs, GPGPUs also provide
several special function units (SFUs) and Load/Store units
(L/SUs).

On NVIDIA GPGPUs, the programmers use CUDA, a

scalable parallel programming model and software platform
for GPGPU and other parallel processors, to parallelize the
applications in hierarchies consisting of threads, warps,
thread blocks (or CTAs) and kernel. At the highest level, a
kernel can be evoked from the host CPU to create a single
grid to run on the GPU. Parallel kernel invocations are
allowed on the same or multiple GPUs [25]. In cases where
the application contains multiple CUDA streams, multiple
kernels will be launched simultaneously. Each kernel grid is
divided into multiple thread blocks that can be specified as
a three-dimensional (3D) array. Each thread block is
organized into groups of multiple threads (called warps,
each has 32 threads) that are also specified in a 3D format.
Thread blocks can be executed on streaming multipro—
cessors in any order because all of the synchronization
primitives are encapsulated in the thread blocks. This leads
to an increase of available parallelism since there are no
restrictions on thread blocks and any streaming multi-
processor is free to schedule any thread blocks. Modern
GPGPUs can provide better performance by effectively
utilizing the computational resources since they can exploit
FGMT which allows the assignment of one or multiple
thread blocks to one streaming multiprocessor [20].

Scheduling in a GPGPU is performed as a three-step
process. In the first step, a kernel of a GPGPU application
is launched on the GPGPU. After launching the kernel, the
global CTA scheduler (e.g. GigaThread[26]) will assign
thread blocks (or CTAs) of the launched kernel to all
available streaming multiprocessors. We assume that the
thread block assignment is done in a round-robin fashion.
After this assignment, if a streaming multiprocessor is
capable of executing multiple thread blocks and there are
enough thread blocks, a second round of assignment starts.
This process (second step) continues until all thread blocks
have been assigned their maximum limit of thread blocks
(limited only by the hardware resources) [7]. After the
thread block assignment, warps associated with the
launched thread block(s) will be scheduled to SIMT lanes of
the corresponding streaming multiprocessor (third step).
The warps are also scheduled in a round-robin fashion
(baseline). A ready (or active) warp, which is ready to fetch
instruction(s), is fed into these lanes for execution every 4
cycles [5]. If there is no ready instruction available, the
scheduler will try again in the next cycle and a stall cycle
is encountered [27]. The baseline GPGPU provides two
parallel warp schedulers and instruction dispatch units -
one for odd warps and the other for even warps - in each
streaming multiprocessor [25].

GPGPU

223

T
)
:
)
: :
CTA1 <« » ' E c
)
' :
L}
CTA2 c |e > E c
'
')
N ()
'_h ‘I
CTA3 © ,F » c
(b) time

(A

Fig. 2. Example of Different Warp/Thread Block with (a, b) Round-Robin Scheduling and (c, d) Proposed Scheduling

4. Proposed Techniques

In this section, we analyze both the advantages and
disadvantages of the round-robin fashion in scheduling
warps. We subsequently describe our motivation for im-
proving warp scheduling policy and detail our proposed
approach for a new warp scheduling policy.

4.1 Round-robin scheduling and motivation

Warp is the smallest unit for executing instructions and
GPGPUs hide latency of operations with its SIMT pipeline
structure by quick warp switching. The principle of warp
scheduling is relying on the priority of warps to select a
warp among all ready warps to issue in the next cycle. The
round-robin (RR) scheduling policy, as the name suggests,
schedules warps in an iterative manner. All of the warps in
the warp pool are treated equally by setting the priority of
the most recently issued warp to the lowest. This means
that the scheduling order of warps in a CTA (or thread
block) is decided by the warp identification (or warp ID).

Theoretically, there are two variations in round-robin
scheduling. The fine-granularity multithreading schedules a
ready instruction from the active warps in every cycle in a
round-robin fashion. Once scheduled, the next instruction in
the same warp will not be scheduled until all of the current
ready instructions in the other warps have been scheduled.
The coarse-granularity multithreading (also known as greedy
scheduling) continuously schedules ready instructions from

the same warp until stall (mainly due to data dependence)

is encountered. It then switches to scheduling ready
instructions from the next warp also in a round-robin
fashion.

Although the round-robin scheduling is common and
applied in many modern GPGPUSs, prior research works
analyzed the drawbacks of the round-robin fashion. In this
section, we will further demonstrate the challenges of using
round-robin warp scheduling schemes in order to hide a
wide range of instruction and memory latencies. The
round-robin scheduler is not effective for hiding long
latency operations since it is highly probable that many
warps executes the same load instructions within a short
time window. This is because warps execute the same
kernel and warps ordered in the round-robin fashion
execute the same load instructions within a short time
interval, unless there is large divergence in warps. Yet, the
round-robin scheduling may cause thrashing in the Level 1
Data Cache. For GTRR (greedy-then-round-rohin), as it
applies round-robin manner to greedily schedule a new
warp, the data locality is hardly kept. The GTO (greedy-
then-oldest) scheduler tends to maintain data locality, which
relieves the memory contention at the data cache and

thereby improves performance.

4.2 Proposed warp scheduler

Based on our mentioned analysis above, there is a high
percentage stall in warp scheduling. This underutilizes the

hardware of streaming multiprocessors, therefore, directly

224 ZJEMEISSl=2Al/EFEH H S48 AAH HMed M5=(2017. 5)

degrades kernel performance. In this section we will present
our motivation in solving the problem of the round-robin
scheduling with a different approach and then describe our
warp scheduling algorithm.

The motivation for a new warp scheduling compared to
the round-robin scheduling is shown in Fig. 2. The small
squares denote the warps and the length of the squares
represents the execution time slot. The arrows indicate
latency and its length defines the degree of latency. Part (a)
shows how the round-robin scheduling works at the warp
level. We assume that the scheduling order of warps in a
thread block is random and that the warps at the positions
2, 4, 7 and 8 (from the left) cause longer latency than the
remaining warps. For simplicity, the length of latencies is
set equal. When a warp is stalled, the next warp will
substitute immediately to increase the utilization of hard-
ware resources. At the CTA level, the scheduling process
performs similarly to that at the warp level. As a CTA ends
its execution slot, another CTA will be assigned to take the
hardware (Part (b)). From the example, we can see the
impact of scheduling at the warp level on scheduling at the
CTA level where the CTA 0 finishes its execution time slot
with long latency. Of course, to keep the pipeline busy,
the access of a streaming multiprocessor resource can be
immediately shifted to the next CTA by performing fast
context-switching. However, a problem might occur when
there is not enough parallelism to overlap the previous long
latency. This means that the streaming multiprocessor will
be inactive because there might be no warps that are not
stalling, resulting in a significant decrease in capability of
hiding long latencies (see Part (b)). In other words, all
compute instructions are exhausted in each compute region
and causing long stalls for each. Recall that a stall cycle is
encountered when the scheduler fails to find a ready
instruction.

Although this example just illustrates round-robin
fashion (fine-granularity multithreading), the same issue
happens to coarse-granularity multithreading (or greedy
fashion) but at a lower level. In general, for these scheduling
polices, instruction and memory latencies can be hidden
only if there is sufficient amount of concurrent threads (i.e.
thread-level parallelism) and therefore, the problem may be
solved. However, the parallelism level depends on
characteristics of each application. One solution for the
mentioned problem is to use parallelism efficiently.

Part (¢) and (d) in Fig. 2 explain our motivation in

solving the problem of the round-robin scheduling policy. It
demonstrates the ability of overlapping long latencies using
the proposed scheduling policy. Our primary goal is to save
available warp/thread parallelism for hiding multiple long
latencies of compute regions. In GPGPU applications, each
warp often executes a small number of global loads that are
separated by a few simple compute instructions and/or
shared memory stores before arriving in a real compute
region with a large number of short-latency instructions.
When these global loads are close together, shifting priority
upon a stall on every long latency load leaves several small
compute regions which are insufficient to overlap with the
subsequent global loads. Therefore, we want to make a
different approach in saving parallelism where warps with
long latency are gathered closely together. To implement
that, the proposed warp scheduling policy then tries to make
those warps overlap each other and scheduled them first
(see in Part (c)). Hence, the thread parallelism can be saved
and will be used later when the compute region is not
sufficient to overlap the subsequent long latency.

Part (b, d) show the effect of the scheduling strategies at
the warp level on the CTA level scheduling in cases of
round-robin and the proposed scheduling. In the example,
we assume a workload where 4 is the maximum number of
CTAs allocating to each streaming multiprocessor. As
depicted in Fig. 2 (Part c), when the warps with long
latency (L-warps) are scheduled before warps with short
latency (S-warps), it is likely that L-warps will overlap
their latencies each other and the remaining parallelism will
be used when L-warps are not sufficient. We suppose that
this is an effective way to hide the long latency because it
not only saves parallelism for necessary cases, but also
does not cause streaming multiprocessors idle. Such
scheduling strategy at the warp level impacts on scheduling
at the CTA level. Indeed, CTAs finish its execution time
slot with a shorter latency compared to round-robin
scheduling policy (Part d). Consequently, the degree of
hardware resources utilization increases, resulting in higher
overall performance of GPGPU.

In summary, the proposed warp scheduling policy has a
new way of scheduling warps to SIMT lanes of a streaming
multiprocessor but it positively impacts on CTA scheduling.
To classify warps in a CTA, a mechanism to track the
number of stall cycles caused by each warp is necessary.
This mechanism can be implemented simply by using a

counter and some hardware storage to save the value of the

GPGPU Xt

Algorithm 1

Step 1: Monitoring the number of stall cycles that is
caused when executing a particular warp. These stall cycles
(caused by control hazards, RAW hazards, and pipeline
stalled) delay a warp’s instruction from getting executed.
The number of stall cycles is accumulated.

Step 2: After collecting information about the stall cycles
of each warp in a particular thread block, all warps can be
classified into 2 groups: L-warps (cause large amount of stall
cycles, meaning long latency) and S-warp (cause small
amount of stall cycles, meaning short latency)

Step 3: The warp scheduler will try to schedule L-warps
before S-warps meaning that L-warps have higher priority
than S-warps in the output scheduling list (which decides
which warp is issued first). To classify all warps in a CTA
into L-warps and S-warps, a threshold is required. However,
our idea tries to save warp parallelism by utilizing L-warps
to hide long latencies each other before the remaining warps
in a CTA. Therefore, in implementation, we can choose a
simple way like sorting warps in descending order of amount
of stall cycles.

counter. The information about the number of stall cycles
will decide the priority of each warp in a thread block.
Algorithm 1 provides further information about the proposed
warp scheduling policy.

Although the proposed warp scheduling policy can
improve the overall performance of GPU, we observe that it
may cause an extra amount of interconnection network or
memory bandwidths. Originally, GPGPUs provide limited
network and memory bandwidth and depending on the
number of streaming multiprocessors and the characteristics
of applications, there can be a bottleneck in GPGPU per-
formance [5]. This issue is becoming increasingly critical.
As we mentioned above, when L-warps, which cause a
large number of stall cycles, are scheduled closely together,
the number of memory accesses or interaction among
streaming multiprocessors will increase and, therefore, the
memory and interconnection bandwidth also increase. In the
worst case, this causes interconnection and memory stalls,
indirectly degrading GPGPU performance, thus reducing
the effectiveness of our warp scheduler.

Current thread block schedulers (e.g. those used in Fermi
and Kepler GPGPUs), which are responsible for thread
block scheduling - 1i.e., distributing the thread blocks to the

streaming multiprocessor, attempt to allocate maximum

HEE MHE 2Tt 5 KAHAIZE 718 2IZ ATEE TIE 225
Algorithm 2
Initialize:
1. n_issued SM = max_n_SM
2. last_n_issued SM = n_issued SM
3. last_n_gpu_cycle = 0
4. last n gpu _cycle = 0
5. last_n_gpu_stall_icntSM = 0
6. last_contention_degree = 0
Monitor:
7. n_gpu_stall_dramftull
8. n_stall_icntZSM
Calculate:
9. delta_n_gpu_stall_dramfull = n_gpu_stall_dramfull

- Jast_n_gpu_stall_dramfull

10. delta_ n_stall_icnt?SM = n_stall icntZ2SM
- last_n_stall_icntZSM

11. delta_gpu_cycle = n_gpu_cycle - last_n_gpu_cycle

Calculate:

12. contention_degree=(delta_n_gpu_stall dramfull+
delta_ n_stall icnt2SM) /delta_gpu_cycle

13. if (contention_degree > last_contention_degree)
&& (n_issued SM > 2)

14. then n_issued SM = n_issued SM - 1

15. else if (contention_degree < last contention_degree)
&& (n_issued SM > max_n_SM -1)

16. then n_issued SM = n_issued SM -

17. else

18. then n_issued SM = last_n_issued SM

Update:

19. last_n_gpu_cycle = n_gpu_cyle

20. last_n_gpu_stall dramifull = n_gpu_stall dramfull
21. last n_gpu_stall_icnt2SM = n_gpu_stall_icnt2SM
22. last_contention_degree = contention_degree

23. last_n_issued SM = n_issued SM

number of thread blocks per-streaming multiprocessor.
The maximum number of thread blocks assigned to each
streaming multiprocessor depends on the resource usage of
the workload, including the amount of registers, shared
memory, etc. [7, 28]. Once a particular thread block finishes,
the thread block scheduler assigns another thread block to
that particular streaming multiprocessor, until all of the
thread blocks have been assigned to the streaming multi—
processors.

Prior research work [5, 8], however, has shown that
executing the maximum possible number of thread blocks
on a streaming multiprocessor is not always the optimal

choice from the performance perspective due to inefficient

226 SEMEISSl=2Al/EFEH H S48 AAH HMed M5=(2017. 5)

utilization of streaming multiprocessor resources. Indeed,
when the thread block scheduler always assigns the
maximum thread blocks to a streaming multiprocessor, it
might cause a higher number of memory and interconnection
network stalls. This issue directly causes pipeline stall,
resulting in inactive status of the streaming multiprocessor,
and thus, performance degradation.

We propose a supplemental technique to alleviate the
issue that may cause by the proposed warp scheduling
policy (see Algorithm 2). More specifically, we use a
simple mechanism that monitors the number of memory
stalls and interconnection network stalls during a period
of GPGPU cycles. Every time the process of assigning
new thread blocks to streaming multiprocessors occurs,
the mechanism will check the contention degree (of the
memory and interconnection network) by making com-—
When the

contention degree is greater than previous value, the

parison with the last contention degree.

number of streaming multiprocessors that will be assigned
new thread blocks in the next cycle is decremented.
Otherwise, the number will be incremented. In case we
cannot increase or decrease the number of streaming multi-
processors that will be assigned thread blocks for the next
round of round-robin scheduling, it will be kept unchanged.
By doing that, the number of thread blocks assigned to
streaming multiprocessors will be adjusted dynamically
depending on the degree of DRAM-full and network stalls.
As a result, the proposed technique can reduce the memory
and network bandwidth when necessary.

Hardware Overhead: To support the proposed warp
scheduler, each hardware warp is allocated a private counter
to tracks the stall cycles. As the maximum number of warps
per streaming multiprocessor 32 (baseline architecture), the
number of counters is 32 per streaming multiprocessor. The
proposed warp scheduler does not require further storage
since it only needs the accumulated counter value. Although
there is latency to sort the warps according to stall cycle
values, this process does not cause the overall latency since
it is substituted for the baseline process that needs to make
the next cycle prioritized warp list. This list is used by the

warp scheduler to know the warp scheduling order.

5. Experiments Methodology

We modified GPGPU-sim version 3.2 [7] to implement
the proposed warp scheduling policy. GPGPU-sim is a

cycle-level performance simulator that models a general-
purpose GPU architecture supporting NVIDIA CUDA [2]
and its PTX ISA. We ran GPGPU-sim with the default
GTX480

architecture. The details of the baseline platform confi-

configuration representing the NVIDIA Fermi

guration used in this work are presented in Table 1 and
Table 2. To evaluate the performance of our proposed
techniques, we use benchmarks from CUDA SDK toolkit
[29] and ISPASS [7]. Table 3 shows the list of selected

benchmarks and some characteristics of the benchmarks.

Table 1. Baseline System Configuration

Architecture NVIDIA Fermi GTX480
of shader cores 15
Warp sizg and SIMD 3
width
of threads/SM 1024
of registers/SM 32768
Shared memory/SM 48KB

L1 Data Cache

16KB per SM (32-sets/4-ways)

L1 Inst Cache

2KB per SM (4-sets/4-ways)

L2 Cache T68KB (64-sets/16-ways/6-banks)

Min. L2 access latency 120 cycles
Min. DRAM access latency 220 cycles

of memory controllers 12

of memory 9
chips/controllers

Memory channel bandwidth 4KB
DRAM request queue size 32

GDDR3

tCL = 10, tRP = 10, tRC = 35,
25, tRCD = 12, tRRD = 8

%
wn
]

Table 2. Interconnection Network Configuration

Parameter Value
Topology Fly
Routing mechanism Destination tag
Routing delay 0
Virtual channels 1
Virtual channel delay 0
Virtual channel buffers 8
Virtual channel allocator iSLIP
Input speedup 2
Output speedup 1
Internal speedup 1
Flit size 32 bytes

GPGPU Xt

Table 3. Simulated Benchmarks

Suite Application CTmfmel %?Kiﬁf
1 C[I;]l;/ AIDé%K VectorAddition 196 6
2 Cﬁfg[iDé%K SimpleMultiGPU 3 6
3 C&Dé?)l(Monte-Carlo 193 7
4 ClljggDé%K MergeSort 8156 7
5 | ISPASS StoreGPU 334 3
6 | ISPASS | Mummer-GPU 19% 4

6. Experimental Results and Discussion

In this section, we show the impact of our scheduling
schemes on GPGPU performance. We start by showing the
performance obtained by the proposed warp scheduling
policy. Fig. 3 presents the IPC of our evaluated schedulers,
normalized to Round-Robin scheduling policy. Across the
applications used in this work, we observed that the
proposed warp scheduler achieved performance improvement
over the round-robin policy by an average of 7.5%.
Moreover, the proposed warp scheduler did not cause any
performance degradation in the selected applications (up to
21% improvement in the case of MUMmerGPU).

We also compared the proposed warp scheduler to a
greedy scheduler [14]. In fact, there are many variations of

greedy scheduling schemes, for example greedy-then round-

T J T T T T T T T
| |BZZ%3 Round-Robin
EHHGTO
roposed
O
o
°
[0]
N
©
E
[]
P
NCo

Fig. 3. IPC of Proposed Warp Scheduling Normalized to RR

o B8 Mg 9

=
0 ES ()

o

E XAzt 718 2l AASE 71" 227

1

robin (GRR) and oldest-first (GTO). In summary, a greedy
scheme runs a single warp until it stalls and then picks
another ready warp to issue. Warp age is determined by the
time the warp is assigned to the shader core (streaming
multiprocessor). For warps that are assigned to a streaming
multiprocessor at the same time (i.e., they are in the same
thread block), warps with the smallest scalar warp IDs are
prioritized. Overall, previous works proved that a greedy
warp scheduling policy performs better than round-robin
warp scheduling policy. In this work, we also compared the
proposed warp scheduling policy to the GTO because it
provides the best results among other variations. As shown
in Fig. 3, the proposed policy outperformed the GTO in all
cases except MergeSort although the improvement is
smaller compared to the round-robin policy (about 2% on
average). The reason behind the little performance impro-
vement of MergeSort is due to the negative impact of the
proposed technique that we will explain later.

As mentioned in Section 4, in the worst case, the
proposed warp scheduler may cause a higher amount of
memory and interconnection network bandwidth due to
consecutively scheduling warps that causes many stall
cycles. This leads to a fact that always assigning the
maximum number of thread blocks to all streaming
multiprocessors is not always an effective way to utilize
hardware resources. To alleviate this issue, we proposed
a supplemental technique for the proposed warp scheduling
policy (see Algorithm 2) that can dynamically reduce
the number of thread blocks that are assigned to

streaming multiprocessors when encountering a high

13 T T T T T T T T T T T 1
B2 Round-Robin
HH GTO 7
124 |/ Proposed -
Q 1.1 -
= 7 7
© 7 7 § i
S 7 78
g 10]
S i
P4 "
0.9-{f5H i
0.8 L R S . — i T L —
6&,-&\0(\) 0‘)\) \eo,b(\o 60(\ ?\) G?\) ?ﬂe

S W@ et
o5 c;\‘(@e\‘\ RUNINCLEN N\\)“\«\

Fig. 4. Normalized IPC with Different Scheduling Schemes

228 FEMEISSl=2Al/EFEH H S48 AAH HMed M5=(2017. 5)

degree of contention (in terms of memory and inter-
connection network bandwidth). Fig. 4 shows the IPC
performance of various scheduling policies normalized to
the round-robin scheduling policy. Overall, with the
technique in Algorithm 2, our warp scheduler performs
better than the original proposal and can achieve a
mean improvement over the round- robin scheduler by
8.9% and over the GTO by 3.2%.

Based on the idea in Algorithm 2, we expect that it will
be effective for applications that have a high degree of
contention. After examining MUMmerGPU, SimpleMultiGPU
and StoreGPU, which benefits more from reduction of the
degree of contention compared to the remaining applications,
we see that these cases a large ration of dram-full and
interconnection—network stalls to the GPU cycles is much
large. Therefore, it can make room for improvement after
the application of Algorithm 2. In contrast, the corresponding
ratio for the remaining cases (VectorAddition, MonteCarlo
and StoreGPU) is quite small, thus, resulting in a very
slight improvement compared to the original proposed
algorithm. In fact, although we cannot receive that kind of
information until execution finishes when executing random
applications in real systems, it proves the correctness of the
technique in Algorithm 2.

7. Conclusion

This paper proposes a new warp scheduling policy to
enhance GPGPU performance by overcoming the resource
underutilization problem of the traditional round-robin
scheduling policy. The idea of the proposal is based on
classification of warps within a thread block into two
groups, warps that cause long latency and warps that
cause short latency and then assigning the warps with long
latency higher priority than the remaining warps. This
seeks to save the thread parallelism in case there is not
enough parallelism to hide long latency operation. This
paper also proposes a supplemental technique that
alleviates the problem of memory and interconnection-
network contention that may be caused by the originally
proposed warp scheduler. Our experimental evaluations,
derived from a 15-streaming multiprocessor GPGPU
platform, demonstrate that the proposed warp scheduler
outperformed the commonly- used round-robin warp
scheduler, leading to an IPC performance improvement of
75%, and up to 89% when applying the supplemental
technique.

References

[1] S. Ryoo, C. I Rodrigues, S. S. Baghsorkhi, S. S. Stone, D.
B. Kirk, and Wen-Mei W. Hwu, “Optimization Principles and
Application Performance Evaluation of a Multithreaded GPU
using CUDA,” in Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming.
ACM, pp.73-82, 2008.

[2] NVIDIA. “CUDA C Programming Guide,” 2012.

[3] M. Garland et al, “Parallel Computing Experiences with
CUDA,” MICRO, IEEE, Vol.28, No.4, 2008.

[4] A. Munshi, “The OpenCL Specification,” Version 1.2, Khronos
OpenCL Working Group, 2011.

[5] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither
More Nor Less: Optimizing Thread-Level Parallelism for
GPGPUs,” in CSE Penn State Tech Report, TR-CES-
2212-006, 2012.

[6] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov,
O. Mutly, and Y. N. Patt, “Improving GPU Performance via
Large Warps and Two-Level Warp Scheduling,” in
Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, ACM, pp.308-317, 2011.

[7] A. Bakhola, G. Yuan, W. W. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA Workloads Using a Detailed GPU
simulator,” in Proceedings of the 2009 International Symposium
on Analysis of Systems and Software (ISPASS-2009), pp.
163-174, Apr. 2000.

[8] M. Lee et.al, “Improving GPGPU Resource Utilization through
Alternative Thread Block Scheduling,” in Proceedings of
the 20th International Symposium on High Performance
Computer Architecture (HPCA), IEEE, pp.260-271, 2014.

[9] V. V. P. Harish and P. J. Narayanan, “Large graph algorithms
for massively multithreaded architectures,” in Technical
report, III'T, 2009

[10] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and
J. Phillips, “GPU Computing,” in Proceedings of the IEEE,
Vol.96, No.5, pp.879-899.

[11] S. Ryoo, C. L. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D.
B. Kirk, and W.-m. W. Hwu, “Optimization Principles and
Aapplication Performance Evaluation of a Multithreaded
GPU Using CUDA,” in Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, ACM, pp.73-82, 2008.

[12] V. Volkov and J. W. Demmel, “Benchmarking GPUs to Tune
Dense Linear Algebra,” in Proceedings of the ACM/IEEE
Conference on Supercomputing, pp.1-11, 2008.

[13] M. Gebhart, R. D. Johnson, D. Tarjan, S. W. Keckler, W.
J. Dally, E. Lindoholm, and K. Skadron, “Energy-efficient
Mechanisms for Managing Thread Context in Throughput
Processors,” in Proceedings of the 38th Annual International
Symposium on Computer Architecture (ISCA), pp.235-246,
2011.

GPGPU Xt

[14] T. G. Rogers, M. O'Connor, and T. M. Aamodt, “Cache-
Conscious Wavefront Scheduling,” in Proceedings of the 45th
Annual IEEE/ACM International Symposium on Micro-
architecture (MICRO), pp.72-83, 2013.

[15] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt,
“Dynamic Warp Formation and Scheduling for Efficient GPU
Control Flow,” in Proceedings of the 40th Annual IEEE/
ACM International Symposium on Microarchitecture, IEEE
Computer Society, pp.407-420, 2007.

[16] J. Lee, N. B. Lakshminarayana, H. Kim, and R. Vuduc,
“Many-Thread Aware Prefetching Mechanisms for GPGPU
Applications,” in Proceedings of the 43rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO),
IEEE Computer Society, pp.213-224, 2010.

[17] A. Jog et al., “Orchestrated Scheduling and Prefetching for
GPGPUs,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA), pp.332-343,
Tel-Aviv, Israel, 2013.

[18] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and
U. Weiser, “Many-Core vs. Many-Thread Machines: Stay
Away From the Valley,” Computer Architecture Letters,
Vol.8, No.1, pp.25-28, 2009.

[19] H.-Y. Cheng, C.-H. Lin, J. Li, and C.-L. Yang, “Memory
Latency Reduction via Thread Throttling,” in Proceedings
of the 43rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp.53-64, 2010.

[20] K. M. Abdalla et al., “Scheduling and Execution of Compute
Tasks,” US Patent US20130185725, 2013.

[21] J. D. Owens et al., “A Survey of Genera—Purpose Com-
putation on Graphics Hardware,” in Eurographics 2005, State
of the Art Reports, pp.21-51, Aug., 2005.

[22] W. W. L. Fung and T. M. Aamodt, “Thread Block
Compaction for Efficient SIMT Control Flow,” in Proceedings
of the 17th International Symposium on High Performance
Computer Architecture (HPCA), IEEE, pp.356-367, 2011.

[23] K. Krewell, “AMD’s Fusion Finally Arrives,” Microprocessor
Report, 2011.

[24] K. Krewell, “NVIDIA Lowers the Heat on Kepler,” Micro—
processor Report, 2012.

[25] NVIDIA, Whitepaper: NVIDIA's Next Generation CUDA
Compute and Graphics Architecture: Fermi.

[26] NVIDIA, “NVIDA Tegra Multiprocessor Architecture,” Feb.
2010.

[27] J. Chen et al., “Guided Region-Based GPU Scheduling:
Utilizing Multi-thread Parallelism to Hide Memory Latency,”
in Proceedings of the IEEE 27th International Symposium
on Parallel and Distributed Processing, pp.441-451, 2013,

2l =2 JHM

=
0 ES ()

o

flet =5 XHEAIZE 7i8t 2= AHSE 71Y 229

[28] D. Kirk, “NVIDIA CUDA Software and GPU Parallel
Computing Architecture,” in ISMM, pp.103-104, 2007.

[29] NVIDA, CUDA SDK [Internet], http://developer.nvidia.com/
gpu—computing—sdk.

[30] A. Jog et al, “OWL: Cooperative Thread Array Aware
Scheduling Techniques for Improving GPGPU Performance,”
in Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp.395-406, 2013.

[31] S--Y. Lee, A. Arunkumar, and C.-J. Wu, “CAWA: Coordinated
Warp Scheduling and Cache Prioritization for Critical Warp
Acceleration of GPGPU Workloads,” in Proceedings of the
42nd Annual International Symposium on Computer Ar-
chitecture (ISCA), pp.515-527, 2015.

[32] W. Jia, K. Shaw, and M. Martonosi, “MRPB: Memory
Request Prioritization for Massively Parallel Processors,” in
Proceedings of the 20th International Symposium on High
Performance Computer Architecture (HPCA), IEEE, pp.272-
283, 2014.

[33] X. Xie et al., “Coordinated Static and Dynamic Cache
Bypassing for GPUs,” in Proceedings of the 21st International
Symposium on High Performance Computer Architecture
(HPCA), TEEE, pp.76-88, 2015.

Do Cong Thuan

e-mail : congthuan.hut@gmail.com

He received the Engineer's degree from
Hanoi University of Science and Tech-
nology, Hanoi, Vietnam in 2012, Master’s

degree from Chonnam National University,

Gwangju, Korea in 2014. Currently, he is
pursuing his Ph.D. at Chonnam National University. His research
interests include computer architecture, parallel processing,

microprocessors, embedded systems and GPGPU.

Yong Choi

e-mail : potchy(0927@gmail.com

He received the Engineer's degree from
Chonnam National University, Gwangju,
Korea in 2015, Master's degree from

Chonnam National University, Gwangju,

Korea in 2017. Currently, he is pursuing
his Ph.D. at Chonnam National University. His research interests
include computer architecture, parallel processing, microprocessors,
embedded systems and GPGPU.

230 FEMEISSl=2Al/EFEH H S48 AAH HMed M5=(2017. 5)

Jong Myon Kim
e-mail : jongmyon.kim@gmail.com
He received the B.S. degree in electrical
engineering from the Myong-Ji University,
Yong-In, Korea, in 1995, the MS degree

in electrical and computer engineering

from University of Florida, Gainesville, in
2000, and the Ph.D. degree in electrical and computer engineering
from the Georgia Institute of Technology, Atlanta, in 2005. He
was a senior research staff in the Chip Solution Center of
Samsung Advanced Institute of Technology from 2005 to 2007.
Since 2007, he has been with the School of Electrical Engineering
at the University of Ulsan, Ulsan, Korea, where he is currently
a Professor. His research interests include embedded systems,

application-specific processors, and parallel processing.

Cheol Hong Kim

e-mail : chkim22@chonnam.ac.kr

He received the B.S. degree in Computer
Engineering from Seoul National University,
Seoul, Korea in 1998 and M.S. degree in
2000. He received the Ph.D. in Electrical
and Computer Engineering from Seoul
National University in 2006. He worked as a senior engineer for
SoC Laboratory in Samsung Electronics, Korea from Dec. 2005
to Jan. 2007. Now he is working as an Associate Professor at
School of Electronics and Computer Engineering, Chonnam
National University, Korea. His research interests include
embedded systems, mobile systems, computer architecture, SoC

design, low power systems, and multiprocessors.

