KIPS Tr. Comp. and Comm. Sys. ZEZ0 =
Vol.3, No.6 pp.173~178 pISSN: 2287-5891

)

ZMAM OIM ORI =85 ndst 2AlZ 88 HPSo &g E8 AJEE 178

http://dx.doi.org/10.3745/KTCCS.2014.3.6.173

Fault-tolerant Scheduling of Real-time Parallel Tasks with
Energy Efficiency on Multicore Processors

Kwanwoo Lee’

ABSTRACT

By exploiting parallel processing, the proposed scheduling scheme enhances energy saving capability of multicore processors for
real-time tasks while satisfying deadline and fault tolerance constraints. The scheme searches for a near minimum-energy schedule within
a polynomial time, because finding the minimum-energy schedule on multicore processors is a NP-hard problem. The scheme consumes
manifestly less energy than the state-of-the-arts method even with low parallel processing speedup as well as with high parallel
processing speedup, and saves the energy consumption up to 86%.

Keywords : Fault Tolerance, Real-time Task, Scheduling, Multicore Processor

HE|Fo] ZZA|A Aol A oA &
AR 7 W 2l 5] A 28

(] of
ANE 2A%Y e WEAD e Besel A7 AY5e dEdel Aokt Y 2 Acke WEewA el ZzAAe
A £ EEYL FIAAT Ak oA ARG 2AFL B AL NP-hard SALE, A Jge Bl A7 o] Hz of
WA dmael DS 2A2E Renh AN NS daE A4 e vluse) Te Wi SEE BE 9o d8id SEdAE
oN1A mgel AAA wgkov], oix AwFE HAv| 86% FHC.

JINE: HE ZE, HAIZH &Y, AAEY, HEZY Z2MAM

1. Introduction

units [1, 2]. Ttransient faults are tolerated with temporal

Mission—critical applications such as smartphone navigation
and mobile surveillance system demand satisfactions of
fault tolerance, real-time constraint, and energy efficiency.
Many fault-tolerant scheduling schemes [1, 2, 3] have
considered energy efficiency of real-time tasks with
DVFES (Dynamic Voltage Frequency Scaling) mechanism
for battery-operated mobile devices. Permanent faults are
that

executes an application in duplicate on several processing

tolerated with modular redundancy technique

% This research was financially supported by Hansung University

REETE LS TR E L
Manuscript Received : February 24, 2014
First Revision: June 2, 2014
Accepted : June 2, 2014

* Corresponding Author : Kwanwoo Lee(kwlee@hansung.ac.kr)

Pag

redundancy technique that re-executes a faulty application
(3.

However, most of them have been done with a premise
that each task is running on a single processing component.
The proposed scheme exploits parallel processing to reduce
energy consumption of real-time tasks while meeting
their deadlines and tolerating a permanent fault based on
PB (primary-backup) model [1, 2]. In PB model, a backup
copy of each task is ready to run on other cores in case
of its primary task failure. If the processing time of a
primary task is larger than half its deadline, a portion of
the backup copy must be executed even in the fault-free
status in order to complete the backup copy within the
deadline. Parallel processing on multiple cores reduces the
processing times of the primary task and its backup copy,

174 SENESel=2X/B7FH H S8 AL M3T M6=(2014. 6)

which can avoid executing a portion of the backup copy
even in the fault-free status. It also decreases the lowest
core speed at which a given task is completed exactly at
its deadline. Total energy consumption of multiple cores
executing the task in parallel with low core speed is
generally smaller than that of a single core executing the
task alone with high core speed [4], because energy
consumption is approximately proportional to the cube of
core speed in DVFS mechanism.

Unfortunately, the problem of minimizing total energy
consumption of real-time tasks on multicore processors is
NP-hard. Hence the proposed scheme searches for a near
minimum-energy schedule within a polynomial time, where
the deadline and fault tolerance constraints are satisfied and
each task can be executed on multiple cores in parallel. To
the best of our knowledge, the proposed scheme is the first
study to deal with both energy efficiency of real-time tasks
and tolerance of permanent faults with the support of
parallel processing, whereas state-of-the—arts methods [1, 2,
3] disregarded the energy saving potential of parallel
processing. A few recent studies [4, 5] verified that parallel
processing can enhance energy efficiency. However, fault
tolerance was not considered in [4] and deadline constraint
of real-time tasks was not considered in [5]. Another
recent study [6] addressed intra-task scheduling of a
parallel task with tolerance of transient faults, but did not
consider inter-task scheduling of multiple parallel tasks
with tolerance of permanent faults.

Section 2 describes the considered system model, and
Section 3 describes the proposed scheme in detail. Section 4
shows evaluation results, and Section 5 provides concluding
remarks.

2. System Model

Given N processing cores are homogeneous and support
DVFS mechanism. In DVFS mechanism [3], core speed is
dynamically changed and energy consumption is proportional
to the cube of core speed. Cores can operate independently
with different speeds. The maximum core speed is denoted
as S, and normalized to S, =1.0. Scaled-down speed
is denoted as S where 0= 5<J, .. =1.0. The proposed
scheme is designed for a permanent hardware fault,
which includes a transient fault and results in failure of
at most one core.

Given M periodic tasks are preemptive and have no
interdependency. Tasks considered in this study are
computation—intensive multimedia applications that are
easily split into subtasks and executed concurrently on

multiple cores without precedence constraint [4]. In PB
model [1, 2], each primary periodic task and its backup

copy should complete their computation within their

arrival period, which becomes their deadline. The m"

primary periodic task is denoted as 7, and its backup
copy is denoted as B,,. D, and W,, respectively denote
the deadline of 7, and the worst processing time of 7,
at the maximum core speed S,.. 7N, denotes the
number of cores allocated for the execution of 7,,. B,

has the same parameters with 7,,. 7,, and B,, are
allocated exclusively to at most %V cores. Parallel processing
speedups of 7, and B5,, on n cores are given as a vector
P,ln] for 1<n< %V . Then P, [n,] < P, In,| for n, <n,,

P, [1]=1, and P,ln]<n for n>2 due to overhead of
parallel processing [4]. The backup copy is always
running at the maximum core speed to minimize the time
reserved but nearly unused and to preserve the system’s
original reliability [1, 2]. The proposed scheme focuses on
minimizing energy consumption in the fault-free status,
because the fault-free status is dominant due to very low
probability of faults.

3. Proposed Scheme

The ratio of total processing time of n cores executing
T, at S, to the deadline is referred to as task
utilization and denoted as Um(n)_ Processing time of a
single core for 7, running on n cores at S, is denoted
as B,(n). Then U,(n) and E,(n) can be formulated

as below:

U,(n)=n -« 7})"1[”] D, an m 1) = Pm[n]

Notice that the definition of task utilization is different
from that in the previous studies [1, 2, 3] where task

m

e W,
utilization is fixed as U, (1) = . U,(n) and E,(n)

m

values vary according to n and 2, [n] values.

The proposed scheme adopts the EEFT method [1]
that minimizes the portion of the backup copy being
executed in the fault-free status. In the EEFT method,
primary tasks are scheduled as soon as possible and
backup copies are scheduled as late as possible. Then the
minimum energy consumption amount of a primary task

HEIZU ZZ2MAM H0IM OIHX 225 dodst AAIZE BHE8 YS9 Za I3 AAHEE 175
and its backup copy activated in the fault-free status can start of B*. Fig. 1(c) shows the minimum energy
be formulated as below: consumption case of Fig. 1(b) without overlapping, where

the core speeds of C; and C, are scaled down to S at
Z)n . D‘m 1 1
n - (B, (n)+2(8, (n) - g B (n) > 2" which 77 is completed exactly at the start of B?. The
¥, (n) = 2 ? ’ scaled-down speed is S= Zn) = £2) The
E,(n) . D, D—E(m) D-EQ@)"
n E;n(n) ifE (n) <

Dm E;n (’fl) 2 . . . E(n)

energy consumption of 77 for the processing time .
which is explained with Fig. 1. is (8 en- 2 (92 B = (922 B) and that

S

Fig. 1 h h ial 1 s of . .
1g (a) shows the sequential execution 7% of a of B in the fault-free status is 0.

primary task on a core C) and the sequential execution

B* of its backup copy on a core Cy at S,,,,. Processing]
yau

. |3 "<
time activated in the fault-free status is depicted with Lemma 1: If —>(—2) for 1=m <np <

N
no\m 2

filled area. In this case, 7 and B° are overlapped at least) .
increment of n,, decreases energy consumption of 7,

. D . .
for the time 2(£(1) -5 The condition for overlapping with the same processing time.

D proof- When mn,, =1, the processing time of 7., at
is E(n) > =. The energy consumption in the fault—free w

2 core speed S is S Pl and its energy consumption
status for 7°¢ is n- (S,,.)° E(n)=n- En)=E(1), ! !

per unit time is ($)*-nm. If n, =mn is replaced with

and that for Bt i e (S,)0 Q(E(n)_ g): n, =n,(>mn), the processing time becomes
n- Q(E(n)fg):2(E(l)f§). Fig. 1(b) shows the parallel 3 .Vg[%} (S 5, .Vg[m}) For the same processing time
execution 7 of the primary task on two cores C) and of T, scaled-down speed S, is selected to be
C,, and the parallel execution B” of its backup copy on P[771] _ _
two cores G, and G at S,.. In this case, 77 and B’ Sy=5 Wﬁ 51 Its energy consumption per unit
are not overlapped. The condition for non-overlapping is . . Pln,] 3
D o) time becomes (S,)* - n, = (51 - ——| -mn, DBecause
E(n) < = Decreased processing time of parallel processing Pln,]
eliminates the overlapping of 7° and B°, and also (. Py,)3 cmy < (8)F - where @ (3)é for
generates slack time between the end of 77 and the ' Py ? ' ! Ply,] Ui
Smax : Smax I Smax] [
Ci ! T . . Cq LI) : Ci T
| D2 D D2 | D D2 | D
Senaxt ; : Smax : Smaxt :
Cz . ol C:2 LE . : C:z T
D12 D D2 | D D2 ! D
+ Smat ! Srat |
Cs : _ Csa . l (o , BP
b2 ' D D2 ' D
T S Smait
C4 ’ ' Cs : & Cs . 5
D2 D Di2 D

(a) (b) (c)

Fig. 1. Energy saving capability of parallel processing

176 SEMESel=2X/B7FH H S8 AL M3T M6=(2014. 6)

1, <1y, replacing n, =mwith n, =17, results in energy
consumption decrement of 7;, with the same processing

time.
1

It 2[n]>(n)g, parallel processing reduces energy

m m m

consumption of the primary task 7, by Lemma 1. It also
reduces the activated time of the backup copy B5,, in the

fault—free status as shown in Fig. 1(b). On the other
hand, it provokes increment of task utilization U, (n,,)

for both 7], and B, because P, [n,,]<mn,, which may

m m
result in failing to satisfy the deadline constraint of other
tasks due to lacking of available cores even at the

maximum core speed. Total task utilization taken in

charge by the i) core is called core utilization and denoted

U, (n,) E,(n,
as CU =2 =2 :
n D

T T

for all 7,s assigned to
the i"core. Then Z]‘v; CU=ZM7 2-U-M(n)
i=17% T ==t
because each task utilization value is distributed to some
of core utilization values. A schedule fails to satisfy the
CU;>1 for any i or if

Z CUz = Z 2. []m(nm) > N.
Our study seeks to determine each m,, so that total

deadline constraint if

energy consumption of all tasks would be minimized

while satisfying the deadline and fault tolerance

constraints of all tasks. Exhaustive assignments of 7,

M

values for all cases require trials, which is too

heavy to run for large M and N even at offline time.
Moreover, minimizing total energy consumption of all
tasks with fixed m,, values on multicore processors is
known as a NP-hard problem [3]. Hence, the proposed
scheme searches for a near minimum-energy schedule in
a heuristic manner. In the first phase, the scheme
calculates the ratio of the energy decrement quantity

obtained when increasing n,, to the corresponding

. . e N
increment quantity of task utilization for 1 <n,, < >

and each 7,,. The ratio can be formulated as below:

’l/)”l (nm) _/l/)flb(n"l + 1)
2 Um(nm+1)—2- U (n)

m m

Wm (M) =

In the second phase, the scheme searches for a near
minimum-energy schedule using the above ¥, (nm)
values. Initially, each n, is set to 1. The scheme

increases m,, of the task with the highest ¥,(n,,)

among ¥, (n,),--, ¥, (n,) by one, generates a schedule
of all tasks using the EEFT method [1], and calculates
its minimum energy consumption with constraint check.
This procedure is repeated until =2 - U, (n,) >N or

N)
M = for each m. In the final phase, the scheme

selects a schedule with the least energy consumption
among the schedules satisfying the deadline and fault
tolerance constraints.

In the second phase, the scheme triggers the EEFT

N . . .
method at most A7 - > times, whereas exhaustive trials

M
times. Because the EEFT

for all cases trigger it (?

method is designed to assign each task to only one core
among dual cores, we modify it slightly to assign each
task to one or more cores among multiple cores. The
following pseudo—code describes the modified EEFT
method operated with fixed n,,s on multiple cores.

1. Sort all 7),s and all B,,s in descending order of
task utilization taken in charge by a single core

. U;n (n'ﬂl) E/TI (nm)
(ie., =).
n D

m m

2. Assign 7, to m,, cores which have the least core
utilization among N cores. Assign B,, to n,, cores
which have the least core utilization among
(V- n,,) cores except the m,, cores executing 7.,.

3. Generate a schedule of each core with the maximum
core speed, in which primary tasks are placed as
soon as possible according to EDF (Earliest Deadline
First) rule and backup copies are placed as late as
possible according to EDL (Earliest Deadline Latest)
rule.

4. Scale down the processing speed of primary tasks
as much as possible using available slack time for
each core.

Even though the static version of the proposed scheme
tolerates a single permanent fault, its dynamic version
can tolerate multiple permanent faults through the
dynamic reconfiguration mechanism [1] that reassigns all
tasks to non-faulty cores after excluding the faulty core
at run-time.

4. Evaluation

The proposed scheme is compared with the EEFT
method [1] that executes each task on a single core. The

HEITN Z2MAM H0IM OIHX &5 1edst

parallel processing speedup on n cores is initially set to
Sln]=(n—1)x0.8+1, referred to as Linear speedup,
because the speedups of many multimedia applications
with massive computations are very close to the number
of allocated cores [4]. To examine effects of lower
parallel processing speedup, we also use two other
speedup models: S[n]=(n—1)x0.5+1, called Sublinear
speedup, and S[n]= +/n, called Square-root speedup.
The number of given periodic tasks is 16, where the
number of primary tasks and their backup copies is 32.
The deadline of each task is uniformly selected between
10 milliseconds and 1 second. The processing time of
each task at the maximum core speed is synthetically
generated between one millisecond and its deadline from
a normal distribution. Average values of 1,000,000 task
sets are displayed.

Fig. 2 shows the ratio of energy consumption in the
proposed scheme to that in the EEFT method, called
Relative Energy Consumption. In Fig. 2(a), N is fixed
to 8 System Load denotes the ratio of total task
utilization when n,, =1 to the number of all cores (e,
>2-0,(1)
s
energy saving performance with higher parallel processing

). The proposed scheme shows higher

speedup. As System Load decreases, energy saving effect

increases. When Linear speedup model is used and
System Load = 10%, the proposed scheme saves about
82% energy consumption of the previous method. Fig.
2(b) shows energy saving effects of the number of

available cores, where total task utilization when n,, =1

is fixed to 222+ U, (1) = 4. The proposed scheme shows

m
higher energy saving performance with higher parallel
processing speedup. As N value increases, energy saving

3 100

g

5 m ___________
w

c

ST & e
R 1 i e
c

w -0~ Square-root
2 Ay~ ——Sublinear
E ——Linear

] N § N i § §
« 0 20 30 40 50 60 70 80 90

System Load (%)

(@)

Fig. 2. Performance comparison against (a) System

AAZH HE NS0l Z

il

zs 2lEd

177

effect increases. When Linear speedup model is used and
N = 32, the proposed scheme saves about 86% energy
consumption of the previous method.

5. Conclusions

The proposed scheme enhances energy saving capability
for real-time tasks while meeting their deadlines and
tolerating permanent faults by exploiting parallel processing,
whereas the related existing methods disregarded the
energy saving potential of parallel processing. The
scheme finds a near minimum-energy schedule within a
polynomial time, because finding the minimum-energy
schedule on multicore processors is a NP-hard problem.
Evaluation results verify that the scheme consumes
manifestly less energy than the state-of-the—arts method
even with low parallel processing speedup as well as

with high parallel processing speedup.

Reference

[1] Y. Guo, D. Zhu and H. Aydin, “Efficient power management
schemes for dual-processor fault-tolerant systems”, in
Proceedings of Intl Workshp Highly-Reliable Power—
Efficient Embedded Designs, 2013, pp.23-27.

[2] M. K. Tavana, M. Salehi and A. Ejlali, “Feedback-based

energy management in a standby-sparing scheme for hard

real-time systems’, in Proceedings of IEEE Real-Time

Systems Symp., 2011, pp.349-356.

T. Wei, P. Mishra, K. Wu and H. Liang, “Fixed-priority

allocation and scheduling for energy—efficient fault tolerance

(3

[

in hard real-time multiprocessor systems”’, IEEE Trans.
Parallel Distrib. Syst., 2008, Vol.19, No.1, pp.1511-1525.

—C—Square-root
20 1| =—Sublinear
—B-Linear

Relative Energy Consump. (%)

4 8 12 18 0 24

Num. of Cores

(b)

Load and (b) number of available cores

178 S=ENESel=2X/B7FH H S8 AL M3T M6=(2014. 6)

[4] W. Y. Lee, “Energy—efficient scheduling of periodic real-time
tasks on lightly loaded multi-core processors”, IEEE Trans.
Parallel Distrib. Syst., 2012, Vol.23, No.3, pp.530-537.

[5] E. Meneses, O. Sarood and L. V. Kal¢, “Assessing energy
efficiency of fault tolerance protocols for HPC systems”, in
Proceedings of Int1 Symp. Computer Archi. High Performance
Computing, 2012, pp.35-42.

[6] Y. Guo, D. Zhu and H. Aydin, “Reliability-aware power
management for parallel real-time applications with
precedence constraints”, in Proceedings of Intl Green
Computing Conf., 2011, pp.1-8.

o & %
e-mail : kwlee@hansung.ac.kr
19949 E I ekan 444 et

(3HAh
19961 x3goistul 7 3FE F 3t
(F3AA
2003y E3FFufdtal H3FE] sk}
(&8
B

2003 ~d Al AT ARAAGEFTY Fug
A Eo}: Realtime Embedded System, Software Product Line,
Aspect-Oriented Programming, IoT(Internet of

Things)

