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1)1. 서  론

In the last two decades, there has been considerable 
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progress in the domain of machine learning due to 

the availability of large amounts of data and the 

evolution of computational power. Various algorithms 

based on simple artificial neural networks (ANNs) 

have been proposed to improve machine learning 

performance in the area of data prediction [1]. A 

widely used network is the recurrent neural network 

(RNN). Based on this network, two types of variant RNNs 

have been devised to achieve better performances: 

A Comparative Study of Machine Learning Algorithms Based on 

Tensorflow for Data Prediction

Qalab E. Abbas†
⋅Sung-Bong Jang††

ABSTRACT

The selection of an appropriate neural network algorithm is an important step for accurate data prediction in machine learning. Many 

algorithms based on basic artificial neural networks have been devised to efficiently predict future data. These networks include deep 

neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and gated recurrent unit (GRU) neural 

networks. Developers face difficulties when choosing among these networks because sufficient information on their performance is 

unavailable. To alleviate this difficulty, we evaluated the performance of each algorithm by comparing their errors and processing times. 

Each neural network model was trained using a tax dataset, and the trained model was used for data prediction to compare accuracies 

among the various algorithms. Furthermore, the effects of activation functions and various optimizers on the performance of the models 

were analyzed The experimental results show that the GRU and LSTM algorithms yields the lowest prediction error with an average RMSE 

of 0.12 and an average R2 score of 0.78 and 0.75 respectively, and the basic DNN model achieves the lowest processing time but highest 

average RMSE of 0.163. Furthermore, the Adam optimizer yields the best performance (with DNN, GRU, and LSTM) in terms of error and 

the worst performance in terms of processing time. The findings of this study are thus expected to be useful for scientists and developers.

Keywords : Artificial Neural Network Algorithm, Machine Learning, Data Prediction, Learning Performance Comparison

데이터 예측을 위한 텐서플로우 기반 기계학습 

알고리즘 비교 연구

Qalab E. Abbas†
⋅장 성 봉††

요     약

기계학습에서 정확한 데이터 예측을 위해서는 적절한 인공신경망 알고리즘을 선택해야 한다. 이러한 알고리즘에는 심층 신경망 (DNN), 반복 

신경망 (RNN), 장단기 기억 (LSTM) 네트워크 및 게이트 반복 단위 (GRU) 신경망등을 들 수 있다. 개발자가 실험을 위해, 하나를 선택해야 하는 

경우, 각 알고리즘의 성능에 대한 충분한 정보가 없었기 때문에, 직관에 의존할 수 밖에 없었다. 본 연구에서는 이러한 어려움을 완화하기 위해 

실험을 통해 예측 오류(RMSE)와 처리 시간을 비교 평가 하였다. 각 알고리즘은 텐서플로우를 이용하여 구현하였으며, 세금 데이터를 사용하여 학습을 

수행 하였다. 학습 된 모델을 사용하여, 세금 예측을 수행 하였으며, 실제값과의 비교를 통해 정확도를 측정 하였다. 또한, 활성화 함수와 다양한 

최적화 함수들이 알고리즘에 미치는 영향을 비교 분석 하였다. 실험 결과, GRU 및 LSTM 알고리즘의 경우, RMSE(Root Mean Sqaure Error)는 

0.12이고 R2값은 각각 0.78 및 0.75로 다른 알고리즘에 비해 더 낳은 성능을 보여 주었다. 기본 심층 신경망(DNN)의 경우, 처리 시간은 가장 낮지만 

예측 오류는 0.163로 성능은 가장 낮게 측정 되었다. 최적화 알고리즘의 경우, 아담(Adam)이 오류 측면에서 최고의 성능을, 처리 시간 측면에서 

최악의 성능을 보여 주었다. 본 연구의 연구결과는 데이터 예측을 위한 알고리즘 선택시, 개발자들에게 유용한 정보로 사용될 것으로 예상된다.
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long short-term memory (LSTM) and gated recurrent 

unit (GRU) [2]. The operation of these algorithms is 

based on the same basic principle: the current state 

of the neural network receives feedback from the 

previous state. The differences among them are as 

follows. An RNN utilizes a single loop to connect a 

previous state to the next one. The advantage of an 

RNN is that the information generated from the 

previous steps can be retained during training [4]. 

GRU was developed to solve the vanishing gradient 

problem of RNN [3]. It defines and uses three different 

types of gates that include the basic, update, and 

reset gates. Furthermore, each gate contains two types 

of vectors that are used to decide what information 

should be passed to the output. An LSTM is a special 

type of RNN. In this network, a special unit, composed 

of a cell, input, output, and forget gates, are introduced 

to avoid the long-term dependency problem [5]. The 

cell remembers values over arbitrary time intervals, 

and the three gates regulate the flow of information 

in and out of the cell. 

Many developers are uncertain when they select 

algorithms to be used in their applications, because 

sufficient information is not readily available about 

the performance of said algorithms. To help solve 

this problem, this paper presents a comparative 

analysis of artificial neural network algorithms used 

for data prediction.

The remainder of this work is organized as follows. 

Section 2 discusses related works. In Section 3, the 

experimental methods used for the comparison of 

the algorithms are described. Section 4 provides a 

comparative analysis of the experimental results for 

each neural network algorithm. Section 5 provides a 

discussion and conclusions of this paper.

2. Related Works

In this section, the basic neural network algorithms 

that can be used for data prediction are described. 

The first is a basic feed forward neural network [5]. 

Feed-forward networks, also known as multilayer 

perceptron, are the foundation of most machine 

learning models [6]. The deep neural network (DNN) 

consists of more than one hidden layers where 

feedbacks are delivered from layer to layer while ANN 

has only one hidden layer. Unlike the feed-forward 

neural networks, RNNs can use their memory to 

process sequences of inputs, which enables them to 

handle time series data in much efficient manner [8]. 

Similar to feed-forward networks, RNNs include 

many hidden layers. The differences are that (a) all 

the layers have different time periods, (b) new data 

are fed in together, and (c) a summary of what has 

been processed is generated. Thus, the next state is 

determined based on the internal state and new data. 

In general, an RNN unit uses the hyperbolic tangent  

function as its activation function [9]. While the RNN 

algorithms perform well in many fields, they also 

present the vanishing gradient problem [10]. The 

problem means that slope of the gradient to find a 

local minimum seems vanishing because it converges 

to extremely too small value. This problem becomes 

worse as the number of layers in the architecture 

increases. To alleviate said problem, the LSTM 

network was proposed. This is a special type of RNN 

that is capable of learning long-term dependencies, 

that performs well on a large variety of problems, 

and that is extensively used [11]. LSTM are explicitly 

designed to avoid the long-term dependency problem. 

All RNNs have the form of a chain of repeating 

modules. In standard RNNs, this repeating module 

has a very simple structure, such as a single tanh 

layer [12]. LSTM also have this chain-like structure, 

but the repeating module has a different structure. 

Instead of having a single neural network layer, there 

are four layers that interact in specific ways. Fig. 2 

shows the structure of the LSTM..

The key to LSTMs is the cell state (i.e., the horizontal 

line running through the top of the diagram in Fig. 2), 

which runs through the entire chain with only minor 

linear interactions [13]. It is very easy for information 

to be passed along unchanged. The LSTM removes or 

adds information to the cell state. This is carefully 

regulated by structures called gates, which are a way 

to optionally let information through. They are composed 

of a sigmoid layer and a point-wise multiplication 

operation. The sigmoid layer outputs numbers 

between zero and one, thus describing how much of 

each component should be let through. A zero output 

value means that nothings are allowed to go to next 

stage, while a value of one means that all inputs are 

allowed to go to next stage. An LSTM has three gates 

to protect and control the cell state. The forget gate 

decides what information is passed to the cell state, 

and what information is not retained
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A more advanced neural network algorithm for 

data prediction is the GRU algorithm. Like the LSTM, 

this algorithm aims to solve the vanishing gradient 

problem [14]. A GRU can be considered a variation 

of the LSTM because both have similar designs and 

perform equally in some cases. Similar to LSTM, a 

GRU also uses gates, which allow the GRU to carry 

information forward over many time periods to 

influence a future time period [15]. In other words, 

the value is stored in the memory for a certain 

amount of time, and it is used at a critical point to 

update the current state. There are two type of gates 

present in GRU, update gate and reset gate.

In the following sections, the above-mentioned 

four algorithms, namely, DNN, RNN, LSTM, and GRU, 

are evaluated and compared.

3. Materials and Methods

In this section, experiment methodology is described 

in more detail that is different from the previous 

approaches. In our approach, the impact of the 

hyper-parameters are analyzed related to the 

performance, and the execution time taken to train 

neural network models are compared for each neural 

network algorithm. Especially, RNN and GRU are 

implemented and prediction accuracy are compared 

using the datasets.

3.1 Dataset Preparation

For this experiment, a tax dataset was collected 

from the official state website of Indiana in United 

States of America. The data were manually collected 

and labeled, and covered the period from January 

2002 to December 2018. The structure of the 

collected dataset is shown in Table 1.

The original dataset included many input features 

available, but only six of them were used in the 

experiment. The input features were chosen depending 

on their importance and on the degree of their 

contribution to the total tax revenue. The total 

number of the data points in the dataset was 50,000. 

 The original data were preprocessed to remove 

unwanted trends during the training process as 

follows [3][6]. First, the data were normalized to 

values between zero and one. After normalization, 

they were converted from a series form into a 

supervised form. In supervised form, the data were 

rearranged to fit the feature structures of the 

established neural network. The dataset was manually 

split into training and test datasets. In this experiment, 

80% of the data was used for training and the 

remaining 20% for testing. From the training data, 

20% was used for validation purpose. After splitting, 

the dataset was ready to be fed into a neural 

network algorithm to initiate the training process.

3.2 Basic Neural Model Definition

Given the dataset, it was necessary to define a 

basic neural network topology to conduct an 

experiment. In our work, this consisted of one input 

layer, two hidden layers, and one output layer, in 

which the number of neurons had to be set. The 

number of neurons in the input layer was set to 12 

and the number in the output layer was set to one. 

To determine the number of neurons in the hidden 

layers, an experiment was conducted in which the 

root mean square errors RMSE[7][8], R2(R square) and 

the execution time were measured for various 

numbers of neurons. The results are listed in Table 2.

Date Total Tax Sales Tax Corporate Tax Alcohol Tax Income Tax

Jan-02 1095.315066 367.773012 8.72288071 2.72045442 525.3856638

Feb-02 641.0663642 286.0530998 10.04979928 2.2398696 226.1648024

Mar-02 721.0449775 289.5563671 8.66791765 1.68767602 289.2697812

Apr-02 1189.753819 303.8098167 9.82458649 3.8028149 567.7487361

May-02 866.0102515 322.5249362 11.34374075 3.00670994 361.9845003

Jun-02 1059.60487 323.2985817 10.79507643 4.15180032 446.3034241

Jul-02 867.4217687 319.619494 21.93781229 2.87842929 313.9429689

Aug-02 807.9360267 326.8921092 39.43001762 3.5726735 320.5216428

Sep-02 1102.56594 332.2001953 30.81398301 3.34064545 483.0450722

Oct-02 899.5798708 320.6954998 32.75210702 3.10617315 331.7502537

Nov-02 805.5886246 312.0898249 23.91763137 3.29860185 324.300282

Dec-02 1007.719442 323.3211502 33.87335489 4.0671118 376.5061455

Table 1. Structure of a Part of the Dataset used in the Experiment. The Values are in Millions of United States (U.S.) Dollars 
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From the results, we can see that the experiments 

with 72 neurons had the lowest error along with 

highest R-squared score and that the execution time 

increased with the number of neurons. Therefore, 

increasing the number of neurons did not necessarily 

provide better results. Correspondingly, we set the 

number of neurons in the hidden layers to 72. The 

final topology is illustrated in Fig. 1.

3.3 Experimental Method

This experiment was carried out in Jupyter 

Notebook with Python as the programming language. 

The entire method of the experiment is illustrated in 

Fig. 2, which consists of nine steps:

Step 1. The dataset was imported to train a specific 

neural network. The original data were stored in a 

comma separated value (CSV) format in an external 

file. The data were then converted into a data frame 

object to conveniently correct missing data and reshape 

the data. The “read.csv” function provided by the 

pandas library was used to handle these objects [11].

Step 2. The original dataset was scaled. The 

dataset had six different features, and each feature 

had a different range of values, which could lead to 

an increased loss in training and testing. Therefore, 

it was necessary to convert all the data values into 

values of the same scale. An advantage of scaling is 

that it can increase the calculation speed, as the 

calculation becomes easier after scaling. The scaling 

of the dataset was done using a MinMaxScaler 

function in the scikit-learn library [12]. 

Step 3. The features were rearranged, input/output 

data were identified, and the decision was made 

about what information would be fed to the 

algorithm and what the expected outcome would be. 

This dataset was of a supervised form. One of the 

important properties of financial time series data is 

that they yield similar trends every 12 months based 

on a 12-month seasonality. This property can be 

used to improve the training performance. Therefore, 

data from the previous 12 months were used as the 

input and output data for training specific models. 

In the original dataset, there was one value of total 

tax and monthly tax data. Thus, it contained 72 

input features and one output after the conversion 

of the data into the supervised form. This conversion 

can be done manually in Excel using the simple 

“shift” function, which moves the input features of a 

desired number of rows into a single row at the output.

Step 4. The data in supervised form were split into 

training and test datasets. The training dataset was 

used for training the neural network and contained 

all the outputs against the corresponding inputs. The 

defined neural network utilized this data to generate 

Fig. 2. Performance Evaluation Processes by Building Nerual

Network Model for Each Algorithm

Fig. 1. Artificial Neural Network Structure to Compare Each 

Algorithm in the Experiment 

Experiment 
Number

Number of 
Neurons

RMSE R2 Execution
Time

1 18 0.1490 0.68 6.603

2 18 0.1379 0.74 6.078

3 36 0.1750 0.55 7.093

4 36 0.1636 0.61 7.605

5 72 0.1211 0.79 8.501

6 72 0.1142 0.81 8.516

7 144 0.1498 0.67 9.129

8 144 0.1302 0.75 8.674

9 288 0.1179 0.79 9.186

10 288 0.1234 0.77 9.712

Table 2. RMSE and Execution Time According to 

the Number of Neurons
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appropriate weights to be used for making pre-

dictions. The test dataset was used to evaluate the 

performance of a defined neural network after it had 

been trained. The test dataset did not contain the 

output so that the neural network could be properly 

tested. Predictions were made using the trained 

neural network with the test dataset, and the results 

were compared with the actual values to evaluate 

the network. The dataset was split so that 180 rows 

were used as the training dataset and the last 12 

rows were used as the test dataset. The general rule 

is to use around 20% data for test purpose but due 

small data size, more data was given to model for 

training purpose. 

Step 5. The hyperparameters were set before 

training the neural network. Hyperparameters define 

high-level concepts, such as the complexity of the 

model and its capacity to learn, and they must be 

defined manually. The only way to find optimal 

values is to set different values, train the models, and 

choose those values that produce the best results. 

The hyperparameters that were set in this experi-

ment included the number of hidden layers, the 

number of nodes in the hidden layers, the activation 

function, and the optimizer. Hidden layers were 

created between the input and output layers to 

increase the performance of the model. When the 

number of hidden layers is decided, certain aspects 

of the model should be considered. First, it should 

be determined whether a deep or shallow model is to 

be used. If a shallow type is chosen there would be 

no hidden layers only the input and output layers. 

Otherwise, it will be more than two. Next, the 

complexity of the data should be considered. If the 

data are very complex, a deep network would be 

more suitable than a shallow one to provide correct 

predictions. However, some research shows that the 

number of hidden layers has no effect on the learning 

abilities of a neural network beyond a certain 

number [13,14]. Therefore, we have to identify this 

number, which can be achieved by assessing 

different configurations, evaluating the performance, 

and choosing the one with the best outcomes. After 

the determination of the number of hidden layers, 

the number of nodes should be determined. A node takes 

weighted inputs from the training set or previous 

layer, applies an activation function, and generates 

the output. The general operation of a node can be 

summed up in the form of the Equation (1).

′ ∗ (1)

In the equation, x’ is the output of the neuron, x is the 

input to the neuron, T is the weight assigned to the 

input, B is the bias, and A is the activation function.

The number of nodes has a tradeoff relationship 

with the processing time in a model, because a node 

is a computational unit. There is no limit on the 

number of neurons in a single layer and there can be 

few or many neurons. However, the only way to 

determine the ideal number of nodes is to test 

different numbers and to choose the one with the 

shorter processing time and the better performance. 

Subsequently, the activation function needs to be 

decided. For the hidden layer, a rectified linear unit 

(ReLu) function was used, and for the output layer, a 

simple linear activation function was used [15,16]. 

The last parameter we set was an optimizer. The 

extensively used optimization algorithms for data 

prediction neural networks are Adam [17], RMSprop, 

stochastic gradient descent (SGD), and Adagrad [18]. 

We conducted experiments with all four optimizers 

in each tested neural network. 

Step 6. The four machine learning models were built 

using libraries provided by Keras and TensorFlow 

[19][20]. Each model had the same number of hidden 

layers and the same number of nodes in each hidden 

layer. Additionally, the same activation function and 

optimizer were used in the comparison experiment. 

The basic ANN model had one hidden layer that 

comprised dense layers. The dense layer are fully 

connected to each node on all layers in a neural 

network. Fig. 3 shows the program sample code to 

define the model.

The RNN model also had one hidden layer, and its 

hidden layer was made up of simple RNN units. The RNN 

units were more complicated than basic neurons because 

they contained feedback loops to retain additional 

information and to achieve better results. Fig. 4 

shows the program code used to define the RNN model.

The LSTM is the most advanced form of a recurrent 

neural network to date. It achieves accurate results 

in different situations. As the name suggests, this 

model is capable of having a very long memory and 

can increase the chances of better results. The 

design of the LSTM model differs only in the hidden 

layer, which consists of LSTM units [24]. Fig. 5 

represents a sample of the source code to define an 
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LSTM neural network model.

Step 7. The models were compiled, and the loss 

function was set to calculate errors to evaluate the 

trained models. In most learning networks, the error 

is calculated as the difference between the actual 

output y and the predicted output ŷ. The function 

that is used to compute this error is known as the 

loss or cost function. The loss function used in this 

experiment was the RMSE [22], which is extensively 

used in linear regression as the performance measure. 

To calculate the RMSE, Equation (2) was used:

RMSE




m




i  

m

∥y
i 

y
i ∥


 (2)

where y(i) is the actual expected output, and ŷ(i) is 

the prediction of the model. Also, m is the number 

of datasets. To minimize the loss function, the model 

parameters were periodically updated by an optimizer. 

The optimizer changes the parameters and minimizes 

the errors of the loss function as soon as possible to avoid 

high computation costs and to provide better results. 

In this experiment, the Adam optimizer was used. 

Step 8. The compiled model was fitted using the 

training data. A fitting method was used to learn the 

parameters from the training data, and a transform 

method was used with those parameters to make 

predictions on the test data. If the calculated RMSE was 

higher than a threshold value of loss, the model was 

trained again after changing hyper-parameters to reduce 

the loss. The meaning of hyper-parameters are initial 

values for training and testing that include activation 

function, initial weights, kind of optimizer. For example, 

activation functions that can be applied are sigmoid 

function, rectified unit (ReLu), and step function.

The program was executed multiple times to set 

the optimal parameters to achieve the best results.

Step 9. Each algorithm was evaluated by measuring 

the RMSE, R2 and the processing times. R-squared is 

a statistical metrics that represents the proportion of 

variance for a dependent variable that’s explained by 

an independent variable or variables in a regression 

model. Furthermore, future total taxes were predicted 

using each model, and the results were compared to 

the recorded taxes. The source code used for predictions 

is illustrated in Fig. 6. 

To perform the prediction, input data were acquired 

from the test data. A comparison between the real 

tax values and predicted ones is shown in Fig. 7.

The hardware specifications for this experimental 

environment were as follows. The central processing 

unit (CPU) used was a 2.4 GHz dual-core Intel i7 

CPU, and the memory was a double data rate 3 (DDR3) 

equal to 8 GB with a bandwidth of 1600 MHz The 

graphics card used was Intel Iris 1536 MB Graphics.

4. Results

In this section, the experimental results are discussed 

for each network model. First, the trends of the 

training and validation losses are compared among 

the neural network models. In this experiment, the 

Adam optimizer was used, the ReLu activation 

function was used, the number of epochs was set to 

500, and the number of neurons in the hidden layers 

was set to 72. The results are presented in Fig. 8.

From Fig. 8, we can see that the training losses 

converged at similar rates, but the validation losses 

converged at different rates. As expected, the simple 

DNN yielded the minimum convergence in the 

training loss when compared to the other schemes, 

because its structure did not have the necessary 

complexity to train a model. The other schemes 

were based on RNNs. Hence, their validation loss 

Fig. 4. An Example of the Source Code to Define an RNN Model

Fig. 5. An Example of the Source Code used to Define an 

LSTM Neural Network Model

Fig. 3. An Example of the Source Code to Define the Basic

Artificial Neural Network Model
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decreased at similar rates; however, there were some 

differences among them. The trend of the validation 

loss in the pure RNN decreased in a more stable 

manner than that of the GRU or the LSTM. Additionally, 

over-fitting did not occur. In the case of the GRU, 

the validation loss increased slightly at the beginning 

of the iterations, but it finally converged and fit the 

dataset well. After 1000 iterations, the GRU exhibited 

better performance than the pure RNN and the 

LSTM. In the LSTM, the validation loss showed a 

similar pattern to that of the GRU, and a much 

higher loss than the training loss at the beginning of 

the iterations. This occurred because the model was 

not trained adequately to achieve good prediction 

accuracies, owing to insufficient data. As the iterations 

progressed, the algorithm updated its weights based 

on the training data. Once the algorithm reached a 

global minimum, it stopped updating the weights 

and the loss graph remained unchanged. If an 

algorithm is tuned well, almost all machine learning 

algorithms exhibit similar patterns. Accordingly, the 

validation loss is increased at the beginning, and 

when the number of iterations increases, the validation 

loss decreases. In Fig. 8, the graphs of the LSTM and 

the GRU are almost identical to each other. This is 

owing to their similar nature: the GRU is a simpler 

version of the LSTM. Therefore, if the data are not 

very complex, both the GRU and the LSTM will show 

quite similar results.

Second, the algorithms were compared based on 

the measured losses and processing times. In this 

experiment, hyperparameters of the same value were 

set for each algorithm. Table 3 represents the 

experimental results for each model. 

As can be observed from the results, the DNN achieved 

the worst performance, as measured by RMSE. This 

is because it used a basic back-propagation neural 

network with a simple architecture. In deep learning, 

if a simple neural network is used with complex 

input data, then it is difficult to achieve good results. 

Furthermore, the DNN yielded the highest RMSE, 

owing to the data from a time series dataset. 

An interesting result in this experiment was that 

the GRU and the LSTM achieved similar results in 

every trial. However, the GRU outperformed the 

LSTM in most trials for a few reasons. One is that 

our dataset was not very large. In general, GRUs are 

known to be more effective with smaller datasets 

compared with LSTMs. The second reason is that the 

LSTM is most efficiently used to remember long 

sequences of data, whereas in our experiment, the 

sequence only comprised 12-time steps [23][24]. 

Finally, we believe that the LSTM is too complex for 

this dataset. This explains why the outcome is worse 

than expected. 

From Table 3, it can be observed that the DNN 

required the shortest processing time, while the 

LSTM required the longest processing time. This is 

expected, given that DNNs are structurally the most 

simple and lightweight, whereas LSTMs are the most 

complex. In the last and final experiment, the LSTM 

Fig. 8. Comparison of Variations of Training and Validation 

Losses for Each Scheme

Fig. 6. An Example of the Source Code used to Predict 

Future Tax Revenue using a Trained RNN

Fig. 7. Visualization of a Comparison between the Predicted and

Actual Taxes (100 Million USD) with a Trained RNN Model
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yielded better results than the GRU, but required a 

considerable amount of time for processing. The 

tradeoff between the processing time and the 

performance is not worth it. 

Third, the effect of the activation function was 

analyzed by comparing the RMSE errors and the 

processing times for all models using tanh or ReLU as the 

activation function. ReLU and tanh are the two most 

extensively used activation functions [26]. Specifically, 

tanh converts the original data values into a range 

from –1 to 1, whereas ReLU has a range of from 0 to 

infinity. In this experiment, the Adam optimizer was 

used. Table 4 lists the results for each model. 

The results show that the RNN-based algorithms, 

i.e., RNN, GRU, and LSTM, are improved when the 

ReLU is used rather than when tanh is used. For 

example, the RMSE value of LSTM with ReLU is 

0.0854 and with tanh is 0.1732. The value with tanh 

is almost twice than the value with ReLU. The reason 

for this is that the converted values produced by 

tanh have negative range numbers, and our data 

consisted of positive values. The processing time 

with ReLU is slightly longer than that with tanh. This 

is expected, because the ReLU algorithm is more 

complicated than the tanh algorithm. However, it 

does not require as much processing time as we 

expected, because it is much more complicated than 

tanh. Based on processing time, there was almost no 

difference between the activation functions in this 

experiment.

Fourth, the effect of the optimizer on the performance 

of each neural network model was evaluated. In this 

experiment, we used four optimizers: Adagrad, SGD, 

RMSprop, and Adam. As it can be observed from the 

results (Table 5), the Adam optimizer yielded the 

lowest RMSE for DNN, GRU, and LSTM. The reason 

for this is that it uses adaptive moment estimation 

and past gradients to calculate the current gradients. 

The Adam optimizer also utilizes the concept of 

momentum by adding fractions of previous gradients 

to the current one. This optimizer has become widespread 

and is practically accepted for use in training neural 

networks. For the basic RNN, RMSprop shows the 

best performance for RMSE errors. 

SGD, stochastic gradient descent; DNN, deep neural 

network; RNN, recurrent neural network; GRU, gated 

recurrent unit; LSTM, long short-term memory; RMSE, 

root mean square error.

However, the Adam optimizer yields the worst 

performance regarding processing time, irrespective 

of the algorithm. The reason for this is that it takes 

a long time for the optimizer to identify the global 

minimum cost for the problem. Furthermore, this is 

attributed to the increased complexity of the 

algorithm. This means that it always yields a solution 

with the lowest possible cost. In this experiment, we 

can observe that the loss exhibits a tradeoff relationship 

Adam Optimizer Processing  
Time (Sec)Neural 

Network

Tanh ReLU

RMSE R2 RMSE R2 Tanh ReLU

DNN 0.0816 0.7 0.1096 0.7 4.15 4.58

RNN 0.1146 0.67 0.0995 0.72 6.04 6.56

GRU 0.1410 0.73 0.0897 0.8 10.71 11.38

LSTM 0.1732 0.72 0.0854 0.75 12.18 12.89

Table 4. Experimental Results According to the Changing 

Activation Functions of tanh and ReLU

Trials

Neural Netwok Models
Processing Time (Sec)

DNN RNN GRU LSTM

RMSE R2 RMSE R2 RMSE R2 RMSE R2 DNN RNN GRU LSTM

1 0.12 0.47 0.14 0.69 0.10 0.87 0.11 0.86 4.27 6.06 10.91 12.52

2 0.15 0.82 0.21 0.63 0.08 0.83 0.09 0.65 4.16 6.05 10.82 12.34

3 0.15 0.76 0.16 0.87 0.13 0.74 0.13 0.64 4.21 6.11 10.79 12.25

4 0.23 0.34 0.18 0.58 0.14 0.77 0.13 0.76 4.19 6.14 10.82 12.41

5 0.14 0.73 0.15 0.73 0.12 0.78 0.13 0.85 4.22 6.47 11.15 12.37

6 0.16 0.69 0.15 0.78 0.10 0.76 0.11 0.83 4.19 6.07 10.84 12.21

7 0.18 0.48 0.10 0.8 0.13 0.87 0.13 0.75 4.20 6.09 10.81 12.25

8 0.18 0.6 0.17 0.71 0.10 0.71 0.12 0.72 4.28 6.06 10.83 12.27

9 0.10 0.71 0.13 0.69 0.15 0.74 0.11 0.71 4.23 6.11 10.98 12.46

10 0.17 0.7 0.11 0.72 0.12 0.82 0.12 0.75 4.22 6.07 11.18 12.84

Avg 0.16 0.63 0.15 0.72 0.12 0.78 0.12 0.75 4.21 6.12 10.91 12.38

Table 3. Experimental Results : RMSE, R2, and Processing Time

RMSE

Neural 

Network

Adagrad SGD1 RMSprop Adam

RMSE R2 RMSE R2 RMSE R2 RMSE R2

DNN 0.1897 0.47 0.1254 0.77 0.1236 0.77 0.1596 0.52

RNN 0.1453 0.69 0.1999 0.41 0.1244 0.77 0.1595 0.67

GRU 0.0937 0.87 0.0834 0.89 0.1076 0.78 0.0897 0.86

LSTM 0.0958 0.86 0.0989 0.85 0.0828 0.81 0.0776 0.67

Processing Time

DNN 4.85 4.26 4.93 4.58

RNN 7.30 6.60 7.35 6.56

GRU 13.88 2.34 13.99 11.38

LSTM 16.40 14.60 15.19 12.89

Table 5. Performance Comparisons Based on 

the Various Optimizers
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with the optimizer. Therefore, the performances of 

the optimizers are not based on a simple reason. 

There are many unknown variables, such as the 

weights, that can affect the performances of the 

optimizers. An optimizer may perform well in one 

experiment and worse in another one. The only way 

to select an optimizer is to test all of them and then 

decide based on the results. 

Fifth, the total taxes for the upcoming 12 months 

were predicted with the four trained neural network 

models. The resulting tax revenues were compared 

to the observed total taxes. Fig. 9 shows the pre-

dicted results of each scheme. The solid line shows 

the actual values, whereas the dotted line graphs 

represent the total values predicted by each neural 

network model. From Fig. 9, it can be observed that 

the LSTM and GRU achieved the best performances 

among all of the tested models.

The DNN model achieved good predictions in the 

first two months. Subsequently, the accuracy decreased 

gradually compared to that of the other models. This 

is attributed to the simple structure of the DNN, 

which does not consider uncertainties or past 

patterns. All of the other algorithms yielded improved 

performances compared to the DNN because they 

utilized previous values and time steps for future tax 

predictions. Among the recurrent algorithms, the RNN 

achieved the worse performance in comparison to 

the GRU and LSTM. The reason for this is that it still 

has a vanishing gradient problem. Both the GRU and 

LSTM yielded prediction outcomes, and the values of 

the LSTM were closer to most of the actual values. 

This is attributed to the fact that the LSTM retains 

useful information from long sequences in time 

series data that is subsequently used for predictions.

To evaluate the contribution of the research 

qualitatively, it was compared with the previous 

research. The recent research related to machine 

learning algorithm comparison can be found in [19]. 

In this research, they have compared random forest 

algorithm, k-nearest neighbor (KNN) algorithm, and 

scalable vector machine (SVM) algorithm to find the 

best performance model for predicting crime hotspot. 

When compared with this, our research has the 

following benefits. First, the previous research did 

not compared the effects of the hyper-parameters 

while these are very important factors of the 

performance. Our researches presented the effects 

clearly. Second. they did not compare the execution 

time taken to train neural network models. The 

learning time is one of the important factors to be 

considered when choosing algorithm. Third, they did 

not use RNN and GRU in the experiment. RNN is 

most widely used to predict time series data, and 

GRU is becoming popular. In our research, we have 

compared these algorithms to predict future data. 

5. Conclusions

DNN, RNN, LSTM, and GRU are the most extensively 

used algorithms for future data prediction. However, 

it is not easy for developers to choose the most 

appropriate algorithm to use with their application 

because enough information on the performance of 

each algorithm is not available. To alleviate the 

difficulty, we implemented and compared the 

algorithms based on the evaluation of their training 

and test errors on a tax dataset. Furthermore, we 

analyzed the effects of the activation functions and 

optimizers on the performance of the algorithms. 

For the activation function, RNN-variant algorithms 

yielded much better performances when ReLU was 

adopted compared to tanh. In the case of the 

optimizers, DNN, GRU, and LSTM yielded better 

performances when the Adam optimizer was used, 

and RNN achieved the best performance when RMSprop 

was adopted. Regarding the processing time, the 

Adam optimizer yielded the worst performance among 

all algorithms. An experiment methodology was 

presented to evaluate each algorithm using tax data 

sets. This methodology and conclusions are valuable 

because these also applicable to other data sets such 

as weather, medical, and industries.

Fig. 9. Comparison of the Future Tax Prediction Results 

with the Trained Models
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