
데이터 예측을 위한 텐서플로우 기반 기계학습 알고리즘 비교 연구 71

1)1. 서 론

In the last two decades, there has been considerable

※ 연구는 금오공과대학교 학술연구비로 지원되었음(2018-104-142).
† 비 회 원 : 금오공과대학교 IT융복합공학과 석사
†† 정 회 원 : 금오공과대학교 산학협력단 부교수

Manuscript Received : October 30, 2020
First Revision : November 30, 2020
Second Revision : January 6, 2021
Accepted : January 14, 2021

* Corresponding Author : Sung-Bong Jang(sungbong.jang@kumoh.ac.kr)

progress in the domain of machine learning due to

the availability of large amounts of data and the

evolution of computational power. Various algorithms

based on simple artificial neural networks (ANNs)

have been proposed to improve machine learning

performance in the area of data prediction [1]. A

widely used network is the recurrent neural network

(RNN). Based on this network, two types of variant RNNs

have been devised to achieve better performances:

A Comparative Study of Machine Learning Algorithms Based on

Tensorflow for Data Prediction

Qalab E. Abbas†
⋅Sung-Bong Jang††

ABSTRACT

The selection of an appropriate neural network algorithm is an important step for accurate data prediction in machine learning. Many

algorithms based on basic artificial neural networks have been devised to efficiently predict future data. These networks include deep

neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and gated recurrent unit (GRU) neural

networks. Developers face difficulties when choosing among these networks because sufficient information on their performance is

unavailable. To alleviate this difficulty, we evaluated the performance of each algorithm by comparing their errors and processing times.

Each neural network model was trained using a tax dataset, and the trained model was used for data prediction to compare accuracies

among the various algorithms. Furthermore, the effects of activation functions and various optimizers on the performance of the models

were analyzed The experimental results show that the GRU and LSTM algorithms yields the lowest prediction error with an average RMSE

of 0.12 and an average R2 score of 0.78 and 0.75 respectively, and the basic DNN model achieves the lowest processing time but highest

average RMSE of 0.163. Furthermore, the Adam optimizer yields the best performance (with DNN, GRU, and LSTM) in terms of error and

the worst performance in terms of processing time. The findings of this study are thus expected to be useful for scientists and developers.

Keywords : Artificial Neural Network Algorithm, Machine Learning, Data Prediction, Learning Performance Comparison

데이터 예측을 위한 텐서플로우 기반 기계학습

알고리즘 비교 연구

Qalab E. Abbas†
⋅장 성 봉††

요 약

기계학습에서 정확한 데이터 예측을 위해서는 적절한 인공신경망 알고리즘을 선택해야 한다. 이러한 알고리즘에는 심층 신경망 (DNN), 반복

신경망 (RNN), 장단기 기억 (LSTM) 네트워크 및 게이트 반복 단위 (GRU) 신경망등을 들 수 있다. 개발자가 실험을 위해, 하나를 선택해야 하는

경우, 각 알고리즘의 성능에 대한 충분한 정보가 없었기 때문에, 직관에 의존할 수 밖에 없었다. 본 연구에서는 이러한 어려움을 완화하기 위해

실험을 통해 예측 오류(RMSE)와 처리 시간을 비교 평가 하였다. 각 알고리즘은 텐서플로우를 이용하여 구현하였으며, 세금 데이터를 사용하여 학습을

수행 하였다. 학습 된 모델을 사용하여, 세금 예측을 수행 하였으며, 실제값과의 비교를 통해 정확도를 측정 하였다. 또한, 활성화 함수와 다양한

최적화 함수들이 알고리즘에 미치는 영향을 비교 분석 하였다. 실험 결과, GRU 및 LSTM 알고리즘의 경우, RMSE(Root Mean Sqaure Error)는

0.12이고 R2값은 각각 0.78 및 0.75로 다른 알고리즘에 비해 더 낳은 성능을 보여 주었다. 기본 심층 신경망(DNN)의 경우, 처리 시간은 가장 낮지만

예측 오류는 0.163로 성능은 가장 낮게 측정 되었다. 최적화 알고리즘의 경우, 아담(Adam)이 오류 측면에서 최고의 성능을, 처리 시간 측면에서

최악의 성능을 보여 주었다. 본 연구의 연구결과는 데이터 예측을 위한 알고리즘 선택시, 개발자들에게 유용한 정보로 사용될 것으로 예상된다.

키워드 : 인공 신경망, 기계 학습, 데이터 예측, 학습성능 비교

KIPS Trans. Comp. and Comm. Sys.

Vol.10, No.3 pp.71~80

ISSN: 2287-5891 (Print), ISSN 2734-049X (Online)

https://doi.org/10.3745/KTCCS.2021.10.3.71

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/3.0/)
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

72 정보처리학회논문지/컴퓨터 및 통신 시스템 제10권 제3호(2021. 3)

long short-term memory (LSTM) and gated recurrent

unit (GRU) [2]. The operation of these algorithms is

based on the same basic principle: the current state

of the neural network receives feedback from the

previous state. The differences among them are as

follows. An RNN utilizes a single loop to connect a

previous state to the next one. The advantage of an

RNN is that the information generated from the

previous steps can be retained during training [4].

GRU was developed to solve the vanishing gradient

problem of RNN [3]. It defines and uses three different

types of gates that include the basic, update, and

reset gates. Furthermore, each gate contains two types

of vectors that are used to decide what information

should be passed to the output. An LSTM is a special

type of RNN. In this network, a special unit, composed

of a cell, input, output, and forget gates, are introduced

to avoid the long-term dependency problem [5]. The

cell remembers values over arbitrary time intervals,

and the three gates regulate the flow of information

in and out of the cell.

Many developers are uncertain when they select

algorithms to be used in their applications, because

sufficient information is not readily available about

the performance of said algorithms. To help solve

this problem, this paper presents a comparative

analysis of artificial neural network algorithms used

for data prediction.

The remainder of this work is organized as follows.

Section 2 discusses related works. In Section 3, the

experimental methods used for the comparison of

the algorithms are described. Section 4 provides a

comparative analysis of the experimental results for

each neural network algorithm. Section 5 provides a

discussion and conclusions of this paper.

2. Related Works

In this section, the basic neural network algorithms

that can be used for data prediction are described.

The first is a basic feed forward neural network [5].

Feed-forward networks, also known as multilayer

perceptron, are the foundation of most machine

learning models [6]. The deep neural network (DNN)

consists of more than one hidden layers where

feedbacks are delivered from layer to layer while ANN

has only one hidden layer. Unlike the feed-forward

neural networks, RNNs can use their memory to

process sequences of inputs, which enables them to

handle time series data in much efficient manner [8].

Similar to feed-forward networks, RNNs include

many hidden layers. The differences are that (a) all

the layers have different time periods, (b) new data

are fed in together, and (c) a summary of what has

been processed is generated. Thus, the next state is

determined based on the internal state and new data.

In general, an RNN unit uses the hyperbolic tangent

function as its activation function [9]. While the RNN

algorithms perform well in many fields, they also

present the vanishing gradient problem [10]. The

problem means that slope of the gradient to find a

local minimum seems vanishing because it converges

to extremely too small value. This problem becomes

worse as the number of layers in the architecture

increases. To alleviate said problem, the LSTM

network was proposed. This is a special type of RNN

that is capable of learning long-term dependencies,

that performs well on a large variety of problems,

and that is extensively used [11]. LSTM are explicitly

designed to avoid the long-term dependency problem.

All RNNs have the form of a chain of repeating

modules. In standard RNNs, this repeating module

has a very simple structure, such as a single tanh

layer [12]. LSTM also have this chain-like structure,

but the repeating module has a different structure.

Instead of having a single neural network layer, there

are four layers that interact in specific ways. Fig. 2

shows the structure of the LSTM..

The key to LSTMs is the cell state (i.e., the horizontal

line running through the top of the diagram in Fig. 2),

which runs through the entire chain with only minor

linear interactions [13]. It is very easy for information

to be passed along unchanged. The LSTM removes or

adds information to the cell state. This is carefully

regulated by structures called gates, which are a way

to optionally let information through. They are composed

of a sigmoid layer and a point-wise multiplication

operation. The sigmoid layer outputs numbers

between zero and one, thus describing how much of

each component should be let through. A zero output

value means that nothings are allowed to go to next

stage, while a value of one means that all inputs are

allowed to go to next stage. An LSTM has three gates

to protect and control the cell state. The forget gate

decides what information is passed to the cell state,

and what information is not retained

데이터 예측을 위한 텐서플로우 기반 기계학습 알고리즘 비교 연구 73

A more advanced neural network algorithm for

data prediction is the GRU algorithm. Like the LSTM,

this algorithm aims to solve the vanishing gradient

problem [14]. A GRU can be considered a variation

of the LSTM because both have similar designs and

perform equally in some cases. Similar to LSTM, a

GRU also uses gates, which allow the GRU to carry

information forward over many time periods to

influence a future time period [15]. In other words,

the value is stored in the memory for a certain

amount of time, and it is used at a critical point to

update the current state. There are two type of gates

present in GRU, update gate and reset gate.

In the following sections, the above-mentioned

four algorithms, namely, DNN, RNN, LSTM, and GRU,

are evaluated and compared.

3. Materials and Methods

In this section, experiment methodology is described

in more detail that is different from the previous

approaches. In our approach, the impact of the

hyper-parameters are analyzed related to the

performance, and the execution time taken to train

neural network models are compared for each neural

network algorithm. Especially, RNN and GRU are

implemented and prediction accuracy are compared

using the datasets.

3.1 Dataset Preparation

For this experiment, a tax dataset was collected

from the official state website of Indiana in United

States of America. The data were manually collected

and labeled, and covered the period from January

2002 to December 2018. The structure of the

collected dataset is shown in Table 1.

The original dataset included many input features

available, but only six of them were used in the

experiment. The input features were chosen depending

on their importance and on the degree of their

contribution to the total tax revenue. The total

number of the data points in the dataset was 50,000.

 The original data were preprocessed to remove

unwanted trends during the training process as

follows [3][6]. First, the data were normalized to

values between zero and one. After normalization,

they were converted from a series form into a

supervised form. In supervised form, the data were

rearranged to fit the feature structures of the

established neural network. The dataset was manually

split into training and test datasets. In this experiment,

80% of the data was used for training and the

remaining 20% for testing. From the training data,

20% was used for validation purpose. After splitting,

the dataset was ready to be fed into a neural

network algorithm to initiate the training process.

3.2 Basic Neural Model Definition

Given the dataset, it was necessary to define a

basic neural network topology to conduct an

experiment. In our work, this consisted of one input

layer, two hidden layers, and one output layer, in

which the number of neurons had to be set. The

number of neurons in the input layer was set to 12

and the number in the output layer was set to one.

To determine the number of neurons in the hidden

layers, an experiment was conducted in which the

root mean square errors RMSE[7][8], R2(R square) and

the execution time were measured for various

numbers of neurons. The results are listed in Table 2.

Date Total Tax Sales Tax Corporate Tax Alcohol Tax Income Tax

Jan-02 1095.315066 367.773012 8.72288071 2.72045442 525.3856638

Feb-02 641.0663642 286.0530998 10.04979928 2.2398696 226.1648024

Mar-02 721.0449775 289.5563671 8.66791765 1.68767602 289.2697812

Apr-02 1189.753819 303.8098167 9.82458649 3.8028149 567.7487361

May-02 866.0102515 322.5249362 11.34374075 3.00670994 361.9845003

Jun-02 1059.60487 323.2985817 10.79507643 4.15180032 446.3034241

Jul-02 867.4217687 319.619494 21.93781229 2.87842929 313.9429689

Aug-02 807.9360267 326.8921092 39.43001762 3.5726735 320.5216428

Sep-02 1102.56594 332.2001953 30.81398301 3.34064545 483.0450722

Oct-02 899.5798708 320.6954998 32.75210702 3.10617315 331.7502537

Nov-02 805.5886246 312.0898249 23.91763137 3.29860185 324.300282

Dec-02 1007.719442 323.3211502 33.87335489 4.0671118 376.5061455

Table 1. Structure of a Part of the Dataset used in the Experiment. The Values are in Millions of United States (U.S.) Dollars

74 정보처리학회논문지/컴퓨터 및 통신 시스템 제10권 제3호(2021. 3)

From the results, we can see that the experiments

with 72 neurons had the lowest error along with

highest R-squared score and that the execution time

increased with the number of neurons. Therefore,

increasing the number of neurons did not necessarily

provide better results. Correspondingly, we set the

number of neurons in the hidden layers to 72. The

final topology is illustrated in Fig. 1.

3.3 Experimental Method

This experiment was carried out in Jupyter

Notebook with Python as the programming language.

The entire method of the experiment is illustrated in

Fig. 2, which consists of nine steps:

Step 1. The dataset was imported to train a specific

neural network. The original data were stored in a

comma separated value (CSV) format in an external

file. The data were then converted into a data frame

object to conveniently correct missing data and reshape

the data. The “read.csv” function provided by the

pandas library was used to handle these objects [11].

Step 2. The original dataset was scaled. The

dataset had six different features, and each feature

had a different range of values, which could lead to

an increased loss in training and testing. Therefore,

it was necessary to convert all the data values into

values of the same scale. An advantage of scaling is

that it can increase the calculation speed, as the

calculation becomes easier after scaling. The scaling

of the dataset was done using a MinMaxScaler

function in the scikit-learn library [12].

Step 3. The features were rearranged, input/output

data were identified, and the decision was made

about what information would be fed to the

algorithm and what the expected outcome would be.

This dataset was of a supervised form. One of the

important properties of financial time series data is

that they yield similar trends every 12 months based

on a 12-month seasonality. This property can be

used to improve the training performance. Therefore,

data from the previous 12 months were used as the

input and output data for training specific models.

In the original dataset, there was one value of total

tax and monthly tax data. Thus, it contained 72

input features and one output after the conversion

of the data into the supervised form. This conversion

can be done manually in Excel using the simple

“shift” function, which moves the input features of a

desired number of rows into a single row at the output.

Step 4. The data in supervised form were split into

training and test datasets. The training dataset was

used for training the neural network and contained

all the outputs against the corresponding inputs. The

defined neural network utilized this data to generate

Fig. 2. Performance Evaluation Processes by Building Nerual

Network Model for Each Algorithm

Fig. 1. Artificial Neural Network Structure to Compare Each

Algorithm in the Experiment

Experiment
Number

Number of
Neurons

RMSE R2 Execution
Time

1 18 0.1490 0.68 6.603

2 18 0.1379 0.74 6.078

3 36 0.1750 0.55 7.093

4 36 0.1636 0.61 7.605

5 72 0.1211 0.79 8.501

6 72 0.1142 0.81 8.516

7 144 0.1498 0.67 9.129

8 144 0.1302 0.75 8.674

9 288 0.1179 0.79 9.186

10 288 0.1234 0.77 9.712

Table 2. RMSE and Execution Time According to

the Number of Neurons

데이터 예측을 위한 텐서플로우 기반 기계학습 알고리즘 비교 연구 75

appropriate weights to be used for making pre-

dictions. The test dataset was used to evaluate the

performance of a defined neural network after it had

been trained. The test dataset did not contain the

output so that the neural network could be properly

tested. Predictions were made using the trained

neural network with the test dataset, and the results

were compared with the actual values to evaluate

the network. The dataset was split so that 180 rows

were used as the training dataset and the last 12

rows were used as the test dataset. The general rule

is to use around 20% data for test purpose but due

small data size, more data was given to model for

training purpose.

Step 5. The hyperparameters were set before

training the neural network. Hyperparameters define

high-level concepts, such as the complexity of the

model and its capacity to learn, and they must be

defined manually. The only way to find optimal

values is to set different values, train the models, and

choose those values that produce the best results.

The hyperparameters that were set in this experi-

ment included the number of hidden layers, the

number of nodes in the hidden layers, the activation

function, and the optimizer. Hidden layers were

created between the input and output layers to

increase the performance of the model. When the

number of hidden layers is decided, certain aspects

of the model should be considered. First, it should

be determined whether a deep or shallow model is to

be used. If a shallow type is chosen there would be

no hidden layers only the input and output layers.

Otherwise, it will be more than two. Next, the

complexity of the data should be considered. If the

data are very complex, a deep network would be

more suitable than a shallow one to provide correct

predictions. However, some research shows that the

number of hidden layers has no effect on the learning

abilities of a neural network beyond a certain

number [13,14]. Therefore, we have to identify this

number, which can be achieved by assessing

different configurations, evaluating the performance,

and choosing the one with the best outcomes. After

the determination of the number of hidden layers,

the number of nodes should be determined. A node takes

weighted inputs from the training set or previous

layer, applies an activation function, and generates

the output. The general operation of a node can be

summed up in the form of the Equation (1).

′ ∗ (1)

In the equation, x’ is the output of the neuron, x is the

input to the neuron, T is the weight assigned to the

input, B is the bias, and A is the activation function.

The number of nodes has a tradeoff relationship

with the processing time in a model, because a node

is a computational unit. There is no limit on the

number of neurons in a single layer and there can be

few or many neurons. However, the only way to

determine the ideal number of nodes is to test

different numbers and to choose the one with the

shorter processing time and the better performance.

Subsequently, the activation function needs to be

decided. For the hidden layer, a rectified linear unit

(ReLu) function was used, and for the output layer, a

simple linear activation function was used [15,16].

The last parameter we set was an optimizer. The

extensively used optimization algorithms for data

prediction neural networks are Adam [17], RMSprop,

stochastic gradient descent (SGD), and Adagrad [18].

We conducted experiments with all four optimizers

in each tested neural network.

Step 6. The four machine learning models were built

using libraries provided by Keras and TensorFlow

[19][20]. Each model had the same number of hidden

layers and the same number of nodes in each hidden

layer. Additionally, the same activation function and

optimizer were used in the comparison experiment.

The basic ANN model had one hidden layer that

comprised dense layers. The dense layer are fully

connected to each node on all layers in a neural

network. Fig. 3 shows the program sample code to

define the model.

The RNN model also had one hidden layer, and its

hidden layer was made up of simple RNN units. The RNN

units were more complicated than basic neurons because

they contained feedback loops to retain additional

information and to achieve better results. Fig. 4

shows the program code used to define the RNN model.

The LSTM is the most advanced form of a recurrent

neural network to date. It achieves accurate results

in different situations. As the name suggests, this

model is capable of having a very long memory and

can increase the chances of better results. The

design of the LSTM model differs only in the hidden

layer, which consists of LSTM units [24]. Fig. 5

represents a sample of the source code to define an

76 정보처리학회논문지/컴퓨터 및 통신 시스템 제10권 제3호(2021. 3)

LSTM neural network model.

Step 7. The models were compiled, and the loss

function was set to calculate errors to evaluate the

trained models. In most learning networks, the error

is calculated as the difference between the actual

output y and the predicted output ŷ. The function

that is used to compute this error is known as the

loss or cost function. The loss function used in this

experiment was the RMSE [22], which is extensively

used in linear regression as the performance measure.

To calculate the RMSE, Equation (2) was used:

RMSE




m




i  

m

∥y
i 

y
i ∥


 (2)

where y(i) is the actual expected output, and ŷ(i) is

the prediction of the model. Also, m is the number

of datasets. To minimize the loss function, the model

parameters were periodically updated by an optimizer.

The optimizer changes the parameters and minimizes

the errors of the loss function as soon as possible to avoid

high computation costs and to provide better results.

In this experiment, the Adam optimizer was used.

Step 8. The compiled model was fitted using the

training data. A fitting method was used to learn the

parameters from the training data, and a transform

method was used with those parameters to make

predictions on the test data. If the calculated RMSE was

higher than a threshold value of loss, the model was

trained again after changing hyper-parameters to reduce

the loss. The meaning of hyper-parameters are initial

values for training and testing that include activation

function, initial weights, kind of optimizer. For example,

activation functions that can be applied are sigmoid

function, rectified unit (ReLu), and step function.

The program was executed multiple times to set

the optimal parameters to achieve the best results.

Step 9. Each algorithm was evaluated by measuring

the RMSE, R2 and the processing times. R-squared is

a statistical metrics that represents the proportion of

variance for a dependent variable that’s explained by

an independent variable or variables in a regression

model. Furthermore, future total taxes were predicted

using each model, and the results were compared to

the recorded taxes. The source code used for predictions

is illustrated in Fig. 6.

To perform the prediction, input data were acquired

from the test data. A comparison between the real

tax values and predicted ones is shown in Fig. 7.

The hardware specifications for this experimental

environment were as follows. The central processing

unit (CPU) used was a 2.4 GHz dual-core Intel i7

CPU, and the memory was a double data rate 3 (DDR3)

equal to 8 GB with a bandwidth of 1600 MHz The

graphics card used was Intel Iris 1536 MB Graphics.

4. Results

In this section, the experimental results are discussed

for each network model. First, the trends of the

training and validation losses are compared among

the neural network models. In this experiment, the

Adam optimizer was used, the ReLu activation

function was used, the number of epochs was set to

500, and the number of neurons in the hidden layers

was set to 72. The results are presented in Fig. 8.

From Fig. 8, we can see that the training losses

converged at similar rates, but the validation losses

converged at different rates. As expected, the simple

DNN yielded the minimum convergence in the

training loss when compared to the other schemes,

because its structure did not have the necessary

complexity to train a model. The other schemes

were based on RNNs. Hence, their validation loss

Fig. 4. An Example of the Source Code to Define an RNN Model

Fig. 5. An Example of the Source Code used to Define an

LSTM Neural Network Model

Fig. 3. An Example of the Source Code to Define the Basic

Artificial Neural Network Model

데이터 예측을 위한 텐서플로우 기반 기계학습 알고리즘 비교 연구 77

decreased at similar rates; however, there were some

differences among them. The trend of the validation

loss in the pure RNN decreased in a more stable

manner than that of the GRU or the LSTM. Additionally,

over-fitting did not occur. In the case of the GRU,

the validation loss increased slightly at the beginning

of the iterations, but it finally converged and fit the

dataset well. After 1000 iterations, the GRU exhibited

better performance than the pure RNN and the

LSTM. In the LSTM, the validation loss showed a

similar pattern to that of the GRU, and a much

higher loss than the training loss at the beginning of

the iterations. This occurred because the model was

not trained adequately to achieve good prediction

accuracies, owing to insufficient data. As the iterations

progressed, the algorithm updated its weights based

on the training data. Once the algorithm reached a

global minimum, it stopped updating the weights

and the loss graph remained unchanged. If an

algorithm is tuned well, almost all machine learning

algorithms exhibit similar patterns. Accordingly, the

validation loss is increased at the beginning, and

when the number of iterations increases, the validation

loss decreases. In Fig. 8, the graphs of the LSTM and

the GRU are almost identical to each other. This is

owing to their similar nature: the GRU is a simpler

version of the LSTM. Therefore, if the data are not

very complex, both the GRU and the LSTM will show

quite similar results.

Second, the algorithms were compared based on

the measured losses and processing times. In this

experiment, hyperparameters of the same value were

set for each algorithm. Table 3 represents the

experimental results for each model.

As can be observed from the results, the DNN achieved

the worst performance, as measured by RMSE. This

is because it used a basic back-propagation neural

network with a simple architecture. In deep learning,

if a simple neural network is used with complex

input data, then it is difficult to achieve good results.

Furthermore, the DNN yielded the highest RMSE,

owing to the data from a time series dataset.

An interesting result in this experiment was that

the GRU and the LSTM achieved similar results in

every trial. However, the GRU outperformed the

LSTM in most trials for a few reasons. One is that

our dataset was not very large. In general, GRUs are

known to be more effective with smaller datasets

compared with LSTMs. The second reason is that the

LSTM is most efficiently used to remember long

sequences of data, whereas in our experiment, the

sequence only comprised 12-time steps [23][24].

Finally, we believe that the LSTM is too complex for

this dataset. This explains why the outcome is worse

than expected.

From Table 3, it can be observed that the DNN

required the shortest processing time, while the

LSTM required the longest processing time. This is

expected, given that DNNs are structurally the most

simple and lightweight, whereas LSTMs are the most

complex. In the last and final experiment, the LSTM

Fig. 8. Comparison of Variations of Training and Validation

Losses for Each Scheme

Fig. 6. An Example of the Source Code used to Predict

Future Tax Revenue using a Trained RNN

Fig. 7. Visualization of a Comparison between the Predicted and

Actual Taxes (100 Million USD) with a Trained RNN Model

78 정보처리학회논문지/컴퓨터 및 통신 시스템 제10권 제3호(2021. 3)

yielded better results than the GRU, but required a

considerable amount of time for processing. The

tradeoff between the processing time and the

performance is not worth it.

Third, the effect of the activation function was

analyzed by comparing the RMSE errors and the

processing times for all models using tanh or ReLU as the

activation function. ReLU and tanh are the two most

extensively used activation functions [26]. Specifically,

tanh converts the original data values into a range

from –1 to 1, whereas ReLU has a range of from 0 to

infinity. In this experiment, the Adam optimizer was

used. Table 4 lists the results for each model.

The results show that the RNN-based algorithms,

i.e., RNN, GRU, and LSTM, are improved when the

ReLU is used rather than when tanh is used. For

example, the RMSE value of LSTM with ReLU is

0.0854 and with tanh is 0.1732. The value with tanh

is almost twice than the value with ReLU. The reason

for this is that the converted values produced by

tanh have negative range numbers, and our data

consisted of positive values. The processing time

with ReLU is slightly longer than that with tanh. This

is expected, because the ReLU algorithm is more

complicated than the tanh algorithm. However, it

does not require as much processing time as we

expected, because it is much more complicated than

tanh. Based on processing time, there was almost no

difference between the activation functions in this

experiment.

Fourth, the effect of the optimizer on the performance

of each neural network model was evaluated. In this

experiment, we used four optimizers: Adagrad, SGD,

RMSprop, and Adam. As it can be observed from the

results (Table 5), the Adam optimizer yielded the

lowest RMSE for DNN, GRU, and LSTM. The reason

for this is that it uses adaptive moment estimation

and past gradients to calculate the current gradients.

The Adam optimizer also utilizes the concept of

momentum by adding fractions of previous gradients

to the current one. This optimizer has become widespread

and is practically accepted for use in training neural

networks. For the basic RNN, RMSprop shows the

best performance for RMSE errors.

SGD, stochastic gradient descent; DNN, deep neural

network; RNN, recurrent neural network; GRU, gated

recurrent unit; LSTM, long short-term memory; RMSE,

root mean square error.

However, the Adam optimizer yields the worst

performance regarding processing time, irrespective

of the algorithm. The reason for this is that it takes

a long time for the optimizer to identify the global

minimum cost for the problem. Furthermore, this is

attributed to the increased complexity of the

algorithm. This means that it always yields a solution

with the lowest possible cost. In this experiment, we

can observe that the loss exhibits a tradeoff relationship

Adam Optimizer Processing
Time (Sec)Neural

Network

Tanh ReLU

RMSE R2 RMSE R2 Tanh ReLU

DNN 0.0816 0.7 0.1096 0.7 4.15 4.58

RNN 0.1146 0.67 0.0995 0.72 6.04 6.56

GRU 0.1410 0.73 0.0897 0.8 10.71 11.38

LSTM 0.1732 0.72 0.0854 0.75 12.18 12.89

Table 4. Experimental Results According to the Changing

Activation Functions of tanh and ReLU

Trials

Neural Netwok Models
Processing Time (Sec)

DNN RNN GRU LSTM

RMSE R2 RMSE R2 RMSE R2 RMSE R2 DNN RNN GRU LSTM

1 0.12 0.47 0.14 0.69 0.10 0.87 0.11 0.86 4.27 6.06 10.91 12.52

2 0.15 0.82 0.21 0.63 0.08 0.83 0.09 0.65 4.16 6.05 10.82 12.34

3 0.15 0.76 0.16 0.87 0.13 0.74 0.13 0.64 4.21 6.11 10.79 12.25

4 0.23 0.34 0.18 0.58 0.14 0.77 0.13 0.76 4.19 6.14 10.82 12.41

5 0.14 0.73 0.15 0.73 0.12 0.78 0.13 0.85 4.22 6.47 11.15 12.37

6 0.16 0.69 0.15 0.78 0.10 0.76 0.11 0.83 4.19 6.07 10.84 12.21

7 0.18 0.48 0.10 0.8 0.13 0.87 0.13 0.75 4.20 6.09 10.81 12.25

8 0.18 0.6 0.17 0.71 0.10 0.71 0.12 0.72 4.28 6.06 10.83 12.27

9 0.10 0.71 0.13 0.69 0.15 0.74 0.11 0.71 4.23 6.11 10.98 12.46

10 0.17 0.7 0.11 0.72 0.12 0.82 0.12 0.75 4.22 6.07 11.18 12.84

Avg 0.16 0.63 0.15 0.72 0.12 0.78 0.12 0.75 4.21 6.12 10.91 12.38

Table 3. Experimental Results : RMSE, R2, and Processing Time

RMSE

Neural

Network

Adagrad SGD1 RMSprop Adam

RMSE R2 RMSE R2 RMSE R2 RMSE R2

DNN 0.1897 0.47 0.1254 0.77 0.1236 0.77 0.1596 0.52

RNN 0.1453 0.69 0.1999 0.41 0.1244 0.77 0.1595 0.67

GRU 0.0937 0.87 0.0834 0.89 0.1076 0.78 0.0897 0.86

LSTM 0.0958 0.86 0.0989 0.85 0.0828 0.81 0.0776 0.67

Processing Time

DNN 4.85 4.26 4.93 4.58

RNN 7.30 6.60 7.35 6.56

GRU 13.88 2.34 13.99 11.38

LSTM 16.40 14.60 15.19 12.89

Table 5. Performance Comparisons Based on

the Various Optimizers

데이터 예측을 위한 텐서플로우 기반 기계학습 알고리즘 비교 연구 79

with the optimizer. Therefore, the performances of

the optimizers are not based on a simple reason.

There are many unknown variables, such as the

weights, that can affect the performances of the

optimizers. An optimizer may perform well in one

experiment and worse in another one. The only way

to select an optimizer is to test all of them and then

decide based on the results.

Fifth, the total taxes for the upcoming 12 months

were predicted with the four trained neural network

models. The resulting tax revenues were compared

to the observed total taxes. Fig. 9 shows the pre-

dicted results of each scheme. The solid line shows

the actual values, whereas the dotted line graphs

represent the total values predicted by each neural

network model. From Fig. 9, it can be observed that

the LSTM and GRU achieved the best performances

among all of the tested models.

The DNN model achieved good predictions in the

first two months. Subsequently, the accuracy decreased

gradually compared to that of the other models. This

is attributed to the simple structure of the DNN,

which does not consider uncertainties or past

patterns. All of the other algorithms yielded improved

performances compared to the DNN because they

utilized previous values and time steps for future tax

predictions. Among the recurrent algorithms, the RNN

achieved the worse performance in comparison to

the GRU and LSTM. The reason for this is that it still

has a vanishing gradient problem. Both the GRU and

LSTM yielded prediction outcomes, and the values of

the LSTM were closer to most of the actual values.

This is attributed to the fact that the LSTM retains

useful information from long sequences in time

series data that is subsequently used for predictions.

To evaluate the contribution of the research

qualitatively, it was compared with the previous

research. The recent research related to machine

learning algorithm comparison can be found in [19].

In this research, they have compared random forest

algorithm, k-nearest neighbor (KNN) algorithm, and

scalable vector machine (SVM) algorithm to find the

best performance model for predicting crime hotspot.

When compared with this, our research has the

following benefits. First, the previous research did

not compared the effects of the hyper-parameters

while these are very important factors of the

performance. Our researches presented the effects

clearly. Second. they did not compare the execution

time taken to train neural network models. The

learning time is one of the important factors to be

considered when choosing algorithm. Third, they did

not use RNN and GRU in the experiment. RNN is

most widely used to predict time series data, and

GRU is becoming popular. In our research, we have

compared these algorithms to predict future data.

5. Conclusions

DNN, RNN, LSTM, and GRU are the most extensively

used algorithms for future data prediction. However,

it is not easy for developers to choose the most

appropriate algorithm to use with their application

because enough information on the performance of

each algorithm is not available. To alleviate the

difficulty, we implemented and compared the

algorithms based on the evaluation of their training

and test errors on a tax dataset. Furthermore, we

analyzed the effects of the activation functions and

optimizers on the performance of the algorithms.

For the activation function, RNN-variant algorithms

yielded much better performances when ReLU was

adopted compared to tanh. In the case of the

optimizers, DNN, GRU, and LSTM yielded better

performances when the Adam optimizer was used,

and RNN achieved the best performance when RMSprop

was adopted. Regarding the processing time, the

Adam optimizer yielded the worst performance among

all algorithms. An experiment methodology was

presented to evaluate each algorithm using tax data

sets. This methodology and conclusions are valuable

because these also applicable to other data sets such

as weather, medical, and industries.

Fig. 9. Comparison of the Future Tax Prediction Results

with the Trained Models

80 정보처리학회논문지/컴퓨터 및 통신 시스템 제10권 제3호(2021. 3)

References

[1] W. C. Wang, K. W. Chau, C. T. Cheng, and L. Qiu, “A

comparison of performance of several artificial intelli-

gence methods for forecasting monthly discharge time

series,” Journal of Hydrology, Vol.374, No.3, pp.294-306,

2009.

[2] A. M. Logar, E. M. Corwin, and W. J. B. Oldham, “A com-

parison of recurrent neural network learning algorithms,”

IEEE International Conference on Neural Networks,

pp.1129-1134, 1993.

[3] A. Shrestha and A. Mahmood, “Review of deep learning

algorithms and architectures,” IEEE Access, Vol.7,

pp.53040-53065, 2019.

[4] S. Hochreiter and J. Schmidhuber, “Long short-term me-

mory,” Neural Computation, Vol.9, No.8, pp.1735-1780,

1997.

[5] A. Sfetsos, “A comparison of various forecasting techniques

applied to mean hourly wind speed time series,” Renew

Energy, Vol.21, No.1, pp.23-35, 2000.

[6] C. L. Wu, K. W. Chau, and C. Fan, “Prediction of rainfall

time series using modular artificial neural networks

coupled with data-preprocessing techniques,” Journal of

Hydrology, Vol.389, No.1, pp.146-167, 2010.

[7] G. Li and J. Shi, “On comparing three artificial neural

networks for wind speed forecasting,” Applied Energy,

Vol.87, No.7, pp.2313-2320, 2010.

[8] T. Chai and R. R. Draxler, “Root mean square error (RMSE)

or mean absolute error (MAE)?-Arguments against avoiding

RMSE in the literature,” Geoscience Model Development,

Vol.7, No.3, pp.1247-1250, 2014.

[9] T. Kluyver, “Jupyter Notebooks—a publishing format for

reproducible computational workflows,” Position Power

Academy Publication, pp.87–90, 2016.

[10] R. Van, G. and F. L. Drake, “Python 3 Reference Manual,”

CreateSpace, 2009.

[11] G. Ariel, “pandas,” pandas-dev/pandas: Pandas.

[12] G. Varoquaux, G. Buitinck, O. Louppe, F. Grisel, Pedregosa,

and A. Mueller, “Scikit-learn,” GetMobile Mobile Computu-

tation. Community, Vol.19, No.1, 2015, pp.29–33.

[13] I. Shaft, J. Ahmad, S. I. Shah, and F. M. Kashif, “Impact

of varying neurons and hidden layers in neural network

architecture for a time frequency application,” Proceedings

of the 10th IEEE International Conference on Multitopic,

pp.188–193, 2006.

[14] K. Shibata and Y. Ikeda, “Effect of number of hidden

neurons on learning in large-scale layered neural net-

works,” Proceedings of the International Joint Conference

on ICCAS-SICE, pp.5008-5013, 2009.

[15] V. Sharma and T. Avinash, “Understanding Activation

Functions in Neural Networks,” Medium, Vol.4, No.12,

pp.1-10, 2017.

[16] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier

nonlinearities improve neural network acoustic models,”

In ICML Workshop on Deep Learning for Audio, Speech

and Language Processing, Vol.28, 2013.

[17] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic

optimization,” Proceedings of the 3rd International Con-

ference on Learning and Representation, pp.1-15, 2015.

[18] M. C. Mukkamala and M. Hein, “Variants of RMSProp and

adagrad with logarithmic regret bounds,” Proceedings of

the 34th International Conference on Machine Learning,

Vol.5, pp.3917-3932, 2017.

[19] X. Zhang, L. Liu, L. Xiao, and J. Ji, “Comparison of Machine

Learning Algorithms for Predicting Crime Hotspots,” IEEE

Access, Vol.8, pp.181302-181310, 2020.

Qalab E. Abbas

https://orcid.org/000-0002-2342-4645

e-mail : qea072@gmail.com

He received a bachelor’s degree in

Electrical Engineering from National

University of Sciences and Technology

(NUST). He is currently a master’s stu-

dent at Kumoh National Institute of Technology, Gumi, South

Korea. His research interests include Machine Learning, Data

Processing.

Sung-Bong Jang

https://orcid.org/000-0003-3187-6585

e-mail : sungbong.jang@kumoh.ac.kr

He received his B.S., M.S., and Ph.D.

degrees from Korea University, Seoul,

Korea in 1997, 1999, and 2010, re-

spectively. He worked at the Mobile

Handset R&D Center, LG Electronics

from 1999 to 2012. Currently, he is an associate professor

in the Department of Industry-Academy, Kumoh

National Institute of Technology in Korea. His interests

include Augmented Reality, Big Data Privacy, Prediction

based on Artificial Neural Networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

