HARIE CIOIEHIOIA AARIONIM WHES Bol Xa) 7(8 227

A vlolelulo] & A=A WEH g e 7Y
¢ g

2 of

71E dolgalols AL HelE AE W, AR $ve AU FEEY Fiolth ARG delgmol2 AAARNE A
2 Aol AR Feolnh 22t 2EF dleolglels AxgddE AR dale] 49 APoz $UY 5 AonZ, JYE N3
U 8E AdE 5 o, dolgola Jeidke £94U F o BFE “UEY @02 WY 4 Uk B =RINE AN HolEo]
& A&dol 38 293 223 dojeMo)s AageA A8HE WEA FAE N $WT d¥sd, /129 ARG dolewo)a
A2 28 d& & YUY BEAY d9Rd 0¥ 72 2& 5 AA A B ohw, Bo} FY s o]FoE FEROZN, Y&
Hrh HEA olfY & UA HE

Intensional Answers in Object-Oriented Database Systems

Yang Hee Kim'

ABSTRACT

When processing a query in a conventional database systems, a set of facts or tuples are usually returned as an answer. This also applies
to object-oriented database where a set of objects is returned. Deductive database systems, however, provide the opportunity to obtain the
answer of a query as a set of formulas, thereby reduce the costs to process the query, and represent its “intensional answers” in a more compact
way independently of the database state. In this paper, by introducing rules into the object-oriented database systems and integrating the
intensional query processing of deductive database systems into the object-oriented database systems, we make it possible not only to answer
incomplete queries which are not able to be answered in conventional object-oriented database systems, but also to express the answer-set
abstractly as the names of classes, which provides us better understanding of the answer.

I|IE : ANZIY COIEIMOIA(Object-Oriented Databases), W2 M&(Class Hierarchy), UEA HS$P Mal(Intensional Query
Processing, LIZ3| E(Intensional Answers), SLD-®4(SLD-resolution)

1 Introduction answer to the given query in a more compact way, but it
can be computed much faster than extensional answers.
Conventionally, a query to an object-oriented database Most of the time intensional answers can be computed only
(OODB) system is answered only by the set of objects that using the rules without accessing the database. For a
satisfy a given query [1]. These objects may belong to detailed description of the intensional query processing, we
different classes within a class hierarchy or they may be refer to [13].
different complex objects somehow related to each other, In this paper, we introduce rules into OODB systems and
Compared to an extensional answer, an intensional an- apply the intensional query processing (IQP) techniques to
swer is a set of rules which characterizes the conditions that OODB systems. All the query languages in OODB systems
an object must satisfy in order to belong to an answer to known to us are not able to incomplete queries. An
a certain query. This formula representation of the output incomplete query is a query on the attribute which belongs
of a query is independent of particular circumstances in the to a subclass but not the base class. In this paper, we make
database. Not only does an intensional answer represent the it possible to answer incomplete queries by representing
OODB schema in terms of rules. Conventionally, the answer-
t A 3 ¥ : Department of Physical Education, Korean National Univer- set of a query in OODB is represented as a set of objects.

EREES %@ %’yflé:?l}g Mﬁf‘f’mﬁz’&*&ﬂfg{'*w) But, the presence of semantics in OODB schema and IQP

228 MENLIES =X D MDA H25(20024)

methodologies enable us to express the answer-set ab—
stractly as names of classes. In this paper, we present an
algorithm to obtain abstract representation of a given
answer-set. It provides us better understanding of the
answer.

Rules which represent OODB schema consists of struc-
tural rules and subclassing rules. The structural rules in turn
consist of “IS_A"-relationships representing the class
hierarchy. The subclassing rules represent characteristic
properties of subclasses. We then transform all the rules to
non-recursive Horn clauses and get an intensional answer
by using SLD-resolution.

We provide some sample queries to show the advantages
of an intensional answer to give query in an OODB system
over conventional answers.

We organize this paper as follows. In section 2, we discuss
several researches which has been done in the IQP. In
section 3, we review the definition of intensional answers
and methods for deriving intensional answers. In section 4,
we look at the “IS_A”-relationship in OODB systems and
the rules in OODB systems which are necessary in order
to use the IQP. In section 5, we formalize methods to derive
intensional answers for a class hierarchy model and give a
detailed example. In section 6, we give conclusions and some
remarks for possible extensions of the method in this paper,

2. Researches on Intensional Answers

For last several years, a lot of works have been done in
this area. While each adopts different approaches, all have
the common goal, that is to answer queries more abstractly.
But research which integrates this area and OODB was
started few years ago.

A deductive database is composed of extensional pre-
dicates (facts) and intensional predicates (rules). Cholvy and
Demolombe [4] provided answers to queries that are inde-
pendent of a particular set of facts, i.e., answers that are
derived only from the rules. They also developed a method
for generating answers using resolution,

Imielinski [6] tried to incorporate intensional predicates as
a part of the answers and Pascual and Cholvy [9] restricted
types of rules in intentional databases (IDB) to Horn clauses
which are most widely adopted and studied in deductive
database systems.

Motro [7] discussed a method that applies database con-
straints to generate intensioanl answers and Motro and Yuan

informally discuss a simple query language incorporating
intensional queries in [7].

Yoon and Song [13] [14] used only Horn-clauses for
intensional databases and use a SLD-resolution which
takes advantages of Horn-clauses. They introduced the
notions of extended term-restricted rules, relevant literals
and relevant clauses to avoid generating certain meaningless
intensional answers. Also, Yoon and Song [15] introduced
a partially automated method for generating intensional
answers o represent answer-set abstractly for a query by
extending current data mining techniques.

3. Definition of Intensional Answers

3.1 Definition

Cholvy and Demolombe [4] give a formal definition of
query answers. Define T as the database theory consisting
of a set of facts and rules and let Q(X) be a query where
X is a tuple of free variables. Then, the intensional answer
ANS(Q) to a certain query Q(X) is defined as follows :

ANS(@ = {ans(X): T + VX (ans(X)— QX)N}

where ans(X) is a literal.

However, we want to restrict the answers within a defined
domain of interest. Here are some restriction on the
intensional answer set.

So, let DP={P,,---, P,} be set of predicate symbols either
of the IDB of the extensional database (EDB). And let
L(DP) be the first order language whose predicate symbols -
are Py,--,P,. Then define an intensional answer ANS
(Q, DP) to the query Q(X) by :

ANS(Q, DP) = {ans(X): asn(X)eL(DP) and

T+ VX (ans(X)— Q(X)) and
(ans (X)) is not the negation of a tautology) and
(each ans(X) is not redundant)}

3.2 Method for deriving answers
In the previous section, we defined an intensional answer.
We note that :

T+ VX (ans(X)— Q(X))
e T J {not(VX (ans(X)— Q(X)))} is inconsistent
o T UJ {(3X(ans(X) A not (Q(X)))} is inconsistent

Let S be a set of clauses that represent the standard
clausal form of 7T axioms [{3]. Then

3X (ans (X) N\ not(Q(X)))

leads the standard form ans(X;) /\ not (Q(X,))) where X,

is a tuple of Skolem constants. So, the above formula is
equivalent to

S U {ans(X,), 7 (Q(X,))} is inconsistent.

Therefore, answer formulas ans(X) are such that re-
solution on S U {ans(X,), 7 (Q (X))} leads to the empty
clause.

However, initially we do not know what ans(X,) are.
So, for the resolution processing, we will start with S U
{7Q(Xy)). After resolving S U {TQ(X,)} will result in
aresolvent R(X;) and then resolving R(X,) together with
ans(X,) will result in the empty clause. That means that
ans(X,) must equal to TR(X,).

4, Class Hierarchy and Rules for abstract expression

4.1 Class Hierarchy

We look at a class hierarchy, representing “IS_A"-rela-
tionships between the different classes. We assume the
following query syntax in our context :

SELECT <attribute of target record type>
FROM <object variables>
WHERE <predicate>

The class hierarchy represented in the following Figure
will be our object-oriented example database.

OBJECT

Ot N

VEHICLE
1d: integer
@(—- Welght : Real
Color : String
<

@ AUTOMOBILE
B, | size : tntoger

gas_mileage : integer {ove! : Resl

@L/ no_doors ! Integer a0eed : Integer |~y @
e N |

FAMILYCAR SHIP

z

ATER_VEHICLE
@)

SPORTSCAR

speed ! Integer no_sests : integer
no_doors : integer = 2 no_dooss : integer = 4

] T~

size : intoger

N

&
Legend: ~ IS_A

(Figure 1) Class Hierarchy

HAXIE CIOIEIHIONIA AAROIA WES gol Mel 718 229

A typical incomplete query for the class hierarchy in
(Figure 1) is the following :

SELECT VEHICLE.id
WHERE speed > 50

According to query languages in OODB systems known
to us, the above query is incorrect. But by integrating
intensional query processing into OODB system, we can
answer such a query.

In a conventional OODB we get back a set of vehicle ids
where the speed of the vehicle is greater than 50 miles per
hour. According to our sample database in (Figure 1), we
get back the following set :

{HSC1, HSC2, -+, NSC1, NSC2, -, HSS1, HSS2, - }.

All these objects belong to different subclasses of the base
class object. In order to find all the applying objects, the
database must provide a technique to search through all the
subclasses of vehicle. But this is not the common “State of
the Art” in OODB systems right now. There do not exist
good query languages for OODB systems which are simple
to use the advantages of an object-oriented system.

By using semantics in OODB schema and intensional
query processing methodologies, the answer-set of a query
is given by not a set of objects but names of classes to which
answer object belong. Since these abstract representation of
the answer set is more concise, it provides us better under-
standing of the answer set.

In our example there are the following intensional answers :

® intensional-answer] = all high_speed_cars
® intensional-answer?2 = all normal_speed_cars
® intensional-answer3 = all high_speed_ships

In the next section of this paper, we will look at a way
to automatically access the desired subclasses without being
aware of the exact structure of the class hierarchy.

3.2 Rules
Introducing the notion of rules we can distinguish between
different kinds of rules :

® integrity constraints
® “ysual” rules

® structural rules

® subclassing rules

First, an object-oriented database may have integrity
constraints expressed as rules. These are not unique for

230 HEX2STEEX D MG-DH R2Z(20024)

object-oriented systems, but can be found in any database
system. So, we are not interested a them here,

The second sort of rules are the “usual” rules that any
deductive database can contain. Also these rules can be used
the same way in an object-oriented database system with
rules as in deductive database systems. The rules don't
depend on dealing with objects or with tuples. So the
occurrence of this type of rules is also not something which
is special or requires a different treatment in object-oriented
database than it requires in deductive databases.

The more important rules we have to be concerned about
are the rules that has to be established in order to complete
an intensional query successfully within an object-oriented
database system. These rules come out of the class hierarchy
of the objects. The system maintains automatically a logical
representation of the schema information. The rules we are
interested in are the rules whose information is stored in
the database schema. The rules concerning the structural
information of the subclassing schema (the “IS_A"-relation-
ship) are the subclassing rules. _

The structural rules and subclassing rules of our given
example database would be the followings :

® structural rules
» “IS_A”" - rules

IS_A (automobile, vehicle)
IS_A (watervehicle, vehicle)
IS_A (sportscar, automobile)
IS_A (family_car, automobile)
IS_A (ship, watervehicle)
IS_A (high_speed_car, sportscar)
IS_A (normal_speed_car, sportscar)
IS_A (high_speed_ship, ship)
IS_A (normal_speed_ship, ship)

® subclassing rules

+ high_speed_car (X) « sportscar (X) A speed (X, Y)
A greater (Y, 200)

+ normal_speed_car (X) < sportscar (X) A speed (X,
Y) A greater(Y, 100) A less(Y, 200)

« sportscar (X) < automobile (X) A no_doors (X, Y) A
equal (Y, 2)

o family_car (X) < automobile(X) A no_doors (X, Y)
A equal (Y, 4)

+ high_speed_ship (X) < ship(X) A speed(X, Y) A
greater (Y, 50)

» normal_speed_ship (X) « ship(X) A speed (X, Y) A
lesseq(Y, 50}

5. Formalization of Intensional Query Processing in
Object-Oriented Database Systeme

In this section, we outline an algorithm deriving inten-
sional answers for a class hierarchy model consisting of
non-recursive Horn clauses. By limiting non-recursive
clauses the algorithm can be terminated, and by Hom
clauses efficient algorithm can be used.

5.1 Processing comparison literals

To compute intensional answers efficiently, subclassing
rules should be represented in a proper form. Since testing
satisfiability in first-order logic formula is undecidable,
adopting first-order logic formula for managing subclassing
rules is not desirable. Therefore, we need a subset of first
order logic expressions which is powerful enough for
expressing subclassing rules and in which the satisfiability
problem can be processed efficiently.

Subclassing rules can be represented with the “simple
predicates” of Eswaran et al. [7]. The BNF of simple
predicate abbreviated by SP is as follows :

(SP>:: = (SP>/\¢SP> | (SP)\/(SP)> | (SP>»
| € predicates>
{ predicates? :: =

{ comparison operator) (variable name), { constant>)
| ¢ comparison operator> ({variable name>, { variable name>)
| < comparison operator>({ variable name>,
{ variable name) + { constant)

{ comparison operator) :: =equal | not __equal | greater
| greater _eq | less| less _eq

Rosencrantz and Hunt showed that the satisfiability
problem of the set of simple predicate is NP-hard [11]. But
they showed that conjunctive not_equal free predicates
(simple predicates that do not contain not_equal and V) can
be solved in polynomial time. We can represent a large class
of subclassing rules with conjunctive not_equal free
predicates. The following algorithm changes a conjunctive
not_equal free predicate to a weighted directed graph [11],
[71.

Input : A conjunctive not_equal free predicate P.

Output :© A weighted directed graph.
(v, and v, stand for variables and ¢ stands for a
constant)

1. Convert P into an equivalent predicate P’ containing only
less_eq comparison literal as follows :
11 Replace v,= v, with (v;<v;+0)A (v2sv,+0).
1.2 Replace v,{v; with v,Sv,+ (—1).
1.3 Replace v, <v, with v, <v,+0.
14 Replace v,> v, with vy<ov;+ (— 1.
15 Replace v;2v,; with v;<v,+0.
16 Replace v, = c with (v, <0+JA 0 <v,+ (—)).
17 Replace v <c with v, <0+ (c—1).
18 Replace v,<c with v; <0+ c.
19 Replace v,> ¢ with 0= v+ (—c—1).
1.10 Replace v, 2 ¢ with 0 v, + (— o).
1.11 Replace v, = vy+ ¢ with (v, Sv+ QA (v S0,
+ (=)
1.12 Replace v,< vy+ ¢ with v;<v;+ (c—1).
1.13 Replace v,s v+ ¢ with v, <v,+ ¢
114 Replace v,>v,+ ¢ with vys0,+(—c¢c~—1).
115 Replace v 2 vy+ ¢ with vy<v;+ (— ¢).

2. Convert P’ into a weighted directed graph. The graph has a
node for each variable and a node for a constant zero.
Conversion is as follows :

21 v,<v,+ c corresponds to an edge from node v to node
v, with edge weight c.

22 v,s0+ ¢ corresponds to an edge from node v, to zero
node with edge weight c.

23 0< v+ ¢ corresponds to an edge from zero node to node
v, with edge weight —c.

AR Xig CIOIEHIONL AIABIOA WHEX Erol MEl 71y 231

The next algorithm will test comparison literals using a
weighted directed graph and return a truth constant or a
simplified predicate.

Input : A predicate consisting of the conjunction of an old com-
parison predicate (predicate in resolvent before resolution)
and a new comparison predicate (predicate in resolvent
after resolution).

Output : Truth constant (TRUE of FALSE) or simplified pre-
dicate.

1. Apply algorithm 1 to the conjunction of old and new com-
parison predicate. And then we get a weighted directed graph
G.

2. If G has a negative cycle then

return FALSE.
else
If there is more than one edge from node 2, to node v,
then
begin
retain the minimum weight edge and discard the others
apply algarithm 2 to G and we get a conjunctive less eq
predicate using step 1 of algorithm 1
if P is the same as new comparison predicate then
return TRUE
else
return P
end
else
return old comparison predicate /\ new comparison
predicate

(Algorithm 1)

There are two restrictions in the above algorithm. The
one is that each variable should be integer valued. The other
is that predicates can not have not_equal operators. For-
tunately, many of subclassing rules involve integer valued
domains such as engine size, price, number of doors, efc.
And in this paper, we will deal with not_equal free pre-
dicates.

The next algorithm will change a weighted directed graph
G with no multiple edges to a conjunctive less_eq predicate
(not_equal free predicate that contains only less_eq).

Input : A weighted directed graph G with no multiple edges.
Output : A conjunctive less_eq predicate.
(v, and v, stand for variables and ¢ stands for a
constant)
1. An edge from node v, to node v, with edge weight ¢
corresponds to ;S v+ ¢
2. An edge from node v; to zero node with edge weight ¢
corresponds to v s0+c
3. An edge from zero node to node u; with edge weight —c¢
corresponds to 0<v;+c.

(Aigorithm 2)

(Algorithm 3)

We can use Floyd's all shortest path algorithm to see if
the graph has a negative weight cycles. In algorithm 3, the
step 1 can be processed in a linear time, if-part of the step
2 (Floyd's all shortest path algorithm) takes O(#°) and
else-part of the step 3 can be processed in a linear time
where % is a number of node in G.

5.2 Strategies for Intensional Answers

In Section 3.2, we proposed structural rules and sub-
classing rules for class hierarchy. Before we get the in-
tensional answers, first of all some rule transformations
should be done in order to get unique intensional literals,
secondly recursion in subclassing rules should be removed,
and “IS_A"-rules to the first order logic should be changed.

Unique intensional literals are literals that are either
extensionally or intensionally defined but not both. So if we
have literal » which is both EDB~defined and IDB-defined,
then rename the extensional literal »* and introduce a new
rule p « 2" in the IDB. In doing so, we can handle complete
queries as well as incomplete queries for the intensional
query processing.

232 BENeIES=8X D MDA H23(20024)

Since structural rules and subclassing rules are conjunc-
tion in IDB, we can remove recursion in subclassing rules.

Finally we can change “IS_A"-rules to the first-order
logic since the semantic of “IS_A" is implication. For exam-
ple, IS_A(X,Y) can be changed Y « X. Now, IDB cor-
responds to a set of non-recursive Horn clauses.

The following algorithm will compute intensional answers
from a set of non-recursive Horn clauses consisting of
EDB U IDB and a query Q(X).

Input : A set of non-recursive Horn clauses consisting of EDB
\J IDB and a query Q(X) where X is a tuple of free
variables.

Output - A set of ANS;(X) of intensional answers.

1. Negate the query and convert it into the clause form
2. Repeat for ali branches of a resolution tree

2.1 Perform resolution using subclassing rules, structural
rules or new rules

2.2 Tf resolvent contains extensional literal 2" then

If base literal is not in the attributes of " then
current branch is fail branch and retum
else
current branch is success branch and retum
else /* if resolvent does not contain extensional kiteral %/
If resolvent contains at least two base literals then
If factoring is impossible among base literals then
current branch is fail branch and return
else
begin
Perform the algorithm 3
If result is FALSE then
current branch is fail branch and return
else if result is FALSE then
aurrent branch is success branch and return
ANS (X) = selected predicate
else
current branch is success branch and retum
ANS;(X) =selected predicate /\ simplifid
predicate
Until it cannot be further resolved

3. If all success branches contain extensional answers then
begin
choose the highest success branch
generate the intensional answers by negating resolvent
end

else

begin
ignore success branch containing extensional answers
return intensional answers ANS;(X)

end

(Aigorithm 4)

5.3 Example

To show the application of the algorithm introduced in the
above section, we will use our example database given in
(Figure 1).

EDB and IDB schema looks as follows :

* EDB

vehicle (id, weight, color)

automobile (id, weight, color, size, gas_mileage, no_doors)
family_car (id, weight, color, size, gas_mileage, no_doors,

no_seats)
sportscar (id, weight, color, size, gas_mileage, no_doors,
speed)
high_speed_car (id, weight, color, size, gas mileage,
no_doors, speed)
normal_speed_car (id, weight, color, size, gas_mileage,
no_doors, speed)

water_vehicle (id, weight, color, level, speed)

ship (id, weight, color, level, speed, size)
high_speed_ship (id, weight, color, level, speed, size)
normal_speed_ship (id, weight, color, level, speed, size)

* IDB
“IS_A"-rules
subclassing rules

Frist we rename the extensional literal, add new rules in
the IDB, remove recursion, and change “IS_A"-rules to the
first order logic :

e EDB

vehicle’ (id, weight, color)

automobile’ (id, weight, color, size, gas_mileage, no_doors)

family_car” (id, weight, color, size, gas_mileage, no_doors,
no_seats)

sportscar” (id, weight, color, size, gas_mileage, no_doors,
speed)

high_speed_car’ (id, weight, color, size, gas_mileage,

no_doors, speed)
normal_speed_car’ (id, weight, color, size, gas_mileage,
no_doors, speed)

water_vehicle’ (id, weight, color, level, speed)

ship® (id, weight, color, level, speed, size)

high_speed_ship’ (id, weight, color, level, speed, size)

normal_speed_ship’ (id, weight, color, level, speed, size)

s DB

» “IS_A"-rules
vehicle (X) < automobile (X)
vehicle (X) < watervehicle (X)
automobile (X) < sportscar (X)
automobile (X) <« family_car (X)

watervehicle (X) < ship(X)
sportscar (X) « high_speed_car (X)
sportscar (X) < normal_speed_car (X)
ship (X) < high_speed_ship (X)
ship(X) < normal_speed_ship (X)

subclassing rules

high_speed_car (X) « speed (X, Y) A greater(Y, 200)

normal_speed_car (X) < speed (X, Y) A greater (Y, 100)
A less (Y, 200)

sportscar (X) « no_doors(X, Y) A equal(Y, 2)

family_car (X) « no_doors(X, Y) A equal (Y, 4)

high_speed_ship (X) < speed (X, Y) A greater (Y, 50)

normal_speed_ship (X) < speed (X, Y) A lesseq (Y, 50)

new rules

vehicle (X) « vehicle (X)

automobile (X) < automobile’(X)

family_car (X) « family_car'(X)

sportscar (X) « sportscar (X)

high_speed_car (X) < high_speed_car (X)
normal_speed_car (X) < normal_speed_car (X)

ZHAIKIE CIOIEABIOIA AMAOIAY LHES &9l M2l 718 233
Now: the resolution tree is as follows.

GOAL 4 vehicie(X), speed(X. Y). greater(?Y, 50)

= vahlcle(X), apsed(X. Y). greater(Y, 50)

/

 vehicls*(X),
Speed(X. Y),

Groster (Y, 50) Watervehicle Part

(Flgure 5)

Automobile Part
(Figure 4)

fall
(Figure 2) Resolution Tree
o-wmrvcmmm apud(x Y), greater(Y, 50)
- mrvomdotx) = ship(X), speed(X. Y), greater(Y. 30)
spoed(X, Y).
greater(Y, 50)

= normal_speed_ship(X),
speediX.Y),

= high_cspeed_ship(X).

SUCCess ¢n ghip®(X). speed(X.Y),

speed(X. Y}, greater(Y, 50) gremter(Y, 50)
greaterCy, 50)
Now let us consider the query “Find a set of vehicle ids / / \ / \
where the speed of the vehicle is greater than 50 miles per avocess oty apo0cd (K, V), O n gpead(X, V).
» : greater(Y, 50). tess_aq(Y, 50).
hour”. The query can be written us S eed(X, 1). coendlX. 1),
greater(Y, 50) greater(Y, 50)
Q(X) = vehicle (X) A speed(X, Y) A greater (Y, 50). \
Thus the goal clause is ANSY(X) = fall
: high_speed ship(X}
« vehicle (X), speed (X, Y), greater (Y, 50). (Figure 2.2) Watervehicle Part
+ automobile(X), speed(X, Y),
Urtmr(x 50)
& gutomobile®(X), \ « familycar(X),
spaed{X, Y}, speed{X, Y).
grester(Y, 50) areater(Y, 50)
al : success - ::u‘:?(‘:;'g Yh
& no_daora(X, Y). speed(X, Y),
4 gportscar®(X). "
speed(X, Y), ::::Id((\;(ZY)) & high_speed_car(X), greater(Y. 50)
greater(Y. 50) ,,.,t.,w 50) spoad(X,). normai_speed_car*(X), |
orunr(Y 50) 16(, Y),
greaterly, 50) falt
suscess ,... I e—
- 'M(X Y, = speed(X. Y),

4 high_speed_car*(X),
spend(X. Y),
greater(Y, 50)

grester(Y. 50),
apeed(X, Y),
greater(Y. 50)

[L

sucCens High_speed_car(X)

@ normal_spesd_car®(X), greater(Y, 100},

speed(X. Y), loas(Y, 200)
greater(Y, 50) speed(X, Y),
l groater(Y, 50)

success ANSY (X) =

Normal_spead_car(X)

(Figure 2.1) Automobile Part

234 FEXIEBI=EX D MDA 22 (20024)

Since there are three branches that have intensional
answers, we have following intensional answers :

® ANS}(X) = high_speed_car (X)
® ANS?(X) = normal_speed_car (X)
® ANS3(X) = high_speed_ship(X)

6. Conclusions and Remarks

In this paper, we developed a formalism to obtain inten-
sional answers for a class hierarchy model. By introducing
rules into the OODB systems and applying the IQP tech-
niques to the OODB systems, we are able to use the ad-
vantages of the semantics of OODB schema.

By using rules derived from the schema information, we
are able not only to answer incomplete queries without
knowing the exact structure of the database but also to
express the answer-set abstractly as the names of classes.
It provides us better understanding of the answer,

However, the method in this paper also has a disad-
vantage. For complete queries, the algorithm in this paper
is less efficient than current query languages since our
method answers a query only after it generates the complete
resolution tree by using structural rules, subclassing rules,
and new rules.

In this paper, we only obtain intensional answers for a
class hierarchy model but not for a class-composition
hierarchy. Qur method does not seem to be powerful enough
to represent a complex object hierarchy. It is probable that
we need more powerful logic for reasoning intensional
answers on complex objects.

References

[1} F. Bancilon, Object-Oriented Database Systems, in Pro-
ceedings of Seventh ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pp.152-162,
Austin, Texas, March, 1988,

[2] S. Bsttcher, M. Jarke and W. Schmidt, Adaptive Predicate
Management in Database System, in Proceedings of 12th
VLDB Conference, 1986.

[3] C.Chang and R. Lee, Symbolic Logic and Mechanical Theorem
Proving, Academic Press, New York and London, 1973,

[4] L. Cholvy and R. Demolombe, Querying a RuleBase, in
Proceedings of the first int'l conference on Expect Database
Systems, ed. Kerschberg, L., pp.365-371, Charleston, South
Carolina, April, 1986.

{5] Parke Godfrey and Jarek Gryz, Overview of Dynamic Query
Euvaluation in Intensional Query Optimization, in Proceed-
ings of the 5th DOOD, Montreux, Switzerland, pp.425-426,
December, 1997.

[6]1 T. Imielinski, Intelligent Query Answering in Rule Based
Systems, J. of Logic Programming, Vol.4, No.3, pp.229-258,
September, 1987. Also appeared as Transforming Logical
Rules by Relational Algebra, in Proceedings of Foundations
of Deductve Database Systems and Logic Programming, ed.
Minker, J., pp.338-377, Washington DC, August, 1986.

[71 A. Motro and Q. Yuan, Querying Database Knowledge, in
Proceedings of ACM SIGMOD, Atlantic City, New Jersey,
pp.173-183, May, 1990.

[8] A. Motro, Using Integrity Constraints to Provide Intensional
Answers to Relational Queries, in Proceedings of 15th VLDB
Conference, 1989.

[9] E. Pascual and L. Cholvy, Answering Queries Addressed
to the Rulebase of a Deductive Database, in Proceedings
of 2nd Int'l Conference on Information Processing and
Management of Uncertainty in Knowledgebased Systems,
.138-145, Urbine, Italy, July, 1988, Springer-Verlag, Lecture
Notes in Computer Sciences 313.

[10] A. Pirotte and D. Roelants, Constraints for Improving the
Generation of Intensional Answers ina Deductive Database,
International Conference on Data Engineering, pp.652-659,
1989.

{111 D. J. Rosenkrantz and M. B. Hunt, Processing conjunctive
predicates and queries, in Proceedings of the Sixth In-
ternational Conference on VLDB, pp.64-74, Montreal, 1980.

[12} I-Y. Song, H-]. Kim and P. Geutner, Intensional Query
Processing : A three step Approach, in Proceedings of 1990
International Conference on Database and Expect Systems
Application, pp.542-549, Vienna, Austria, Aug. 1990,

[13] Suk-Chung Yoon, I-Yeol Song and E. K. Park, Intelligent
Query Answering in Deductive and Object-Oriented Data-
bases, CIKM, pp.244-251, 1994,

[14] 8. C. Yoon, I Y. Song and E. K. Park, Semantic Query
Processing in Object-Oriented Databases Using Deductive
Approach, CIKM, pp.150-157, 1995,

[15] S. C. Yoon, . Y. Song and E. K. Park, Intensional query
processing using data mining approaches, in CIKM, pp.
201-208, 1997,

— TR

e-mail * yangh-kim@knupe.ac.kr

19821 ol It (1AL

1984 e E £33 S (O] FAA

| 1988'd University of Wisconsin - Madison
HALA AT 0] B A}

1989 University of Wisconsin - Madison
AAA A (ALY o))
1997'd YR AAFE - AFHH FHAT UFEHLAD
1985\ ~1989'd University of Wisconsin - Madison A} A4

g TA
1990 ~1998'd ROl AAA AT AYARAL, 2T
19983 ~2001'd FHREZ HFEHARZFAT R AYAAL,
Z AT
20018 ~¥A #FA ST ALYH 2P
TRl 4 9 9E ¢nFE § A2d, A delg
ol WEH Ao He, F vlojewo]2 o]
Eujol2 Hel F

	sad:

