1. Introduction

ECC (Elliptic Curve Cryptography) among all known

JHME O|F A GCD YIEIE 7I8 GFRFIA0IM lterative LisH7| A

145

DOI: 10.3745/KIPSTC.2010.17C.2.145

MAE o)A 37 GCD ¢1dE 78k GF(2'%) Ao A
Iterative UxAl7] A4

t =t
Zbol ML o F

[=R = —

2 o

¥ =R E37|4(standard basis) E7|HE o8t GFE™) AolAHaE Pyl dneSS Atstn, A9k dnelEe 7)o
2 3 g5 dt=go] FE(iterative hardware structure) & 2He 1 RAl7|E AAgd Agetd e 58 o7 &3 GCD 4 E& 7| ¥
o g glov], mEe4 (modular reduction)d 8 BE A&k 7|Ee] W s 92 shute] whileFZ oA s Aoty &
P2 EE 7|0 sho] AAE Yedrle BE A4 8 2 REo| el Fed gsMlelseg AN 57} of$ W o)
A AHEshE 74 ohab4 (reduction polynomial) &SEC2 (Standards for Efficient Cryptography) o4 @7ahe= f0)=x""n"wfnd100, 24
(degree) me 163& AHEFch A|oHgk ¢ta2]FE Verllog HDL(Hardware Description Language)& A}83te] FPGAR T & o0, Xilinx-
VirtexIl XC2VB000 FPGA #4ellA 8MHzZ F23He& Selabsich =3, 74 2z 9 A% 3718 58o Aohe dueFe) a9 F+ ¢4
gl gat Aeladd Adge walck

e BEEJIN BI|Y, O1TEE GCD YI2E, 1% WM ¢n2|§, 8 PX, Verilog HDL, FPGA

Design of Iterative Divider in GF(2'®) Based on Improved Binary
Extended GCD Algorithm

Min-Sup Kang' - Byong-Chan Jeon"

ABSTRACT

In this paper, we first propose a fast division algorithm in GF(2'™) using standard basis representation, and then it is mapped into
divider for GF(2'™) with iterative hardware structure. The proposed algorithm is based on the binary ExtendedGCD algorithm, and the
arithmetic operations for modular reduction are performed within only one “while-statement” unlike conventional approach which uses two
“while-statement”. In this paper, we use reduction polynomial f(x)=x""+x"+x"+x*+1 that is recommended in SEC2(Standards for Efficient
Cryptography) using standard basis representation, where degree m = 163. We also have implemented the proposed iterative architecture in
FPGA using Verilog HDL, and it operates at a clock frequency of 85 MHz on Xilinx-VirtexIl XC2ZVB000 FPGA device. From
implementation results, we will show that computation speed of the proposed scheme is significantly improved than the existing two
approaches,

Keywords : Standard Basis Representation, Binary Extendedalgorithm, Fast Division Algorithm, Iterative Structure, Verilog
HDL, FPGA

public key cryptography systems has been widely used in

wireless application. In ECC algorithm, the most time

*®

+
had

s

s work was supported by the research program of 2009 year from

£

3 A:gdus dacisels sy = |
B8y raps 2 TRt addition have less computation time [1-3].

o {7 AN o

consuming part is scalar multiplication that can be com-
puted by point addition and doubling operations. In either

vang University, Kyeonggi-Do SMBA, and IDEC, KAIST in Korea case, major operations for time consuming are field mul-
g s o e e i tiplication and field inversion, while squaring and field

ARghE 1 2000 941 309 Several algorithms have been introduced for computing

146 ZEXM2IFIA=EX C H17-CE M2=(20104)

field inversion/division operation based on the Extended
Euclidean algorithm [2-6]. Although these algorithms can
be easily implemented using software programs on a
general-purpose computer, they would be slow and in-
efficient for public key cryptosystems which is used a
very large field [3, 4]. In order to resolve these problems,
the first sublinear time parallel algorithm that uses a
polynomial number of processors has been introduced by
Kannan Miller, and Rudolph [7], and a parallel extended
GCD (Greatest Common Divisor) algorithm has been
presented, which uses the concurrent-read concurrent-
write (CRCW) parallel RAM (PRAM) model of computa-
tion [8].

The binary Extended GCD algorithm was known that
it is simple, but it has difficulty of hardware im-
plementation [2-4]. In [3], an efficient algorithm is pre-
sented based on a modified version of the Euclid's GCD
algorithm. Although this algorithm is suitable for im-
plementing GF divider with systolic array structure, it is
still time-consuming. Thus a fast algorithm that can per-
form arithmetic operation in fewer clock cycles [9, 10] is
required, which is suitable for iterative hardware
implementation.

In this paper, we propose the hardware implementation
of iterative divider based on a fast division algorithm in
GF(2'®) using standard (Polynomial) basis representation.
The proposed algorithm is based on the binary Extended
algorithm, and the arithmetic operations are performed for
modular reduction in only one while-statement unlike
conventional approach. Through implementation results,
we have shown that the computation speed of our ap-
proach is significantly improved than that of the conven-
tional approaches [2, 4] due to reduction of the number of
clock cycles used.

This paper is organized as follows. Section 2 in-
troduces problems of the conventional two algorithms for
performing field division operation based on the
Extendedalgorithm. Section 3 describes a proposed divi-
sion algorithm and fast iterative divider design for speed-
ing-up division operation in GF(2'™). In section 4, simu-
lation results and performance analysis are given, which
is based on the improved division algorithm. Finally, con-
clusion is given in section 5.

2. Related Works

Let A(x) and B(x) be the polynomial representations of
two elements in GF(2"), G(x) be the irreducible poly-
nomial with degree m, where B(x) 0, and P(x) be the di-

vision result for A(x)/B(x) mod G(x). Then we have

Alx) = apX™ Hags X™ O+ o tapxtag
B(x) = bn-1x™ " +bpax™ %+ -+ +byctby
G(X) = X" g™ g axX™ 2 o +gixtgy
P() = po-iX™ 4pmaX™+ +++ +pix+po.

Each coefficient of these polynomials is binary digit 0
or 1, and all arithmetic operations are performed by tak-
ing coefficients of the results mod 2. When A(x) = 1,
P(x) is called the multiplicative inverse of B(x). The bi-
nary Extended GCD algorithm is an efficient way of cal-
culating modular division, P(x). To compute the modular
division, the algorithm is based on the following three
facts: if R and S are both even, then GCD (S, R) =
xGCD (S/x, R/x), if R is even and S is odd, then GCD
(S, R) = GCD (S, R/x), if R and S are both odd, then
GCD (S, R) = GCD ((S-R)/x, R) [2, 4].

A procedure for performing the inversion operation of
“I/B(x) mod G{x)" over GF(2™) is shown in (Fig. 1),
which is called binary Extended GCD algorithm [2].

This algorithm can be divided into three steps written
in (1), (2) and (3). In step (1), to calculate “U/ x mod G”,
the algorithm examines the LSB (Least Significant Bit) of
U to determine whether it is even (u = 0) or odd (u #
0). If it is even, the algorithm performs U/ x, otherwise it

Input : G(x), Alx), Blx)
Output : U has Plx) = A(x)/B(x) mod Gl(x)
Initialize : R = Blx), 5=G= G(x), U = Alx), V =0
while S =0 do
(1) while r == 0 do

R = R/x

if u==0 then U = U/x

else U = (U+G)/x end if

end while

(2) while s0 == 0 do

S=5/x

if v0 == 0 then V = V/ x

else V = (V+G)/ x end if

end while
(3)if S = R then
(S, R) = (SR, R);
(v, U) = (U+V, U)
else
(8, R) = (§, S+ R}
(V,) = (V, U+V);
end if
end while

(Fig. 1) Binary Extended GCD algorithm over GF(2™)

JHME 0|7 SHE GCD LI2IE 7|8t GFERP)AOIM lteratve LEM7| & 147

performs (U+G)/ x. In this algorithm, modular reduction is
accomplished by a simple shift operation.

Now, we consider that this algorithm is implemented in
iterative hardware structure, By using first clock cycle,
the initial parameters stored in four registers of a size of
163 bits are transferred to their outputs of control block,
and then in the module of step (1), the modular reduction
of variable sets, (R, U) is performed depending on control
bits of ry and ug. Continuously, the updated values are fed
to the same registers, and then the control bit 1o is tested
again in the module. The variable sets can be also up-
dated if the bit ry is even, where one clock cycle is
required. As a result, we can see that the number of
clock cycle which will be used is the same as the iter-
ation times in the module (see Table 1). In the module of
step (2), modular reduction process is also performed for
variable sets of (S, V) and a division result is at least
obtained from the use of one clock in step (3). Note that
U will have the division result P(x) = A(x)/B(x) mod
G(x) if we replace U = 1 by U = A(x) [4].

<Table 1> shows an example for computing division
in GF(2") based on the algorithm of (Fig. 1), G(x) = x'+
x+1, Alx) = ¥*+x'+x, and B(x) = xX+x+1.

As shown in <Table 1>, we assume that each param-
eter is initialized as S = G{x), R = Blx), and U = A(x),
where V = 0. Two items of Itr and #Clk represent iter-
ation times that executed in outer while-statement and

{Table 1> An example for computing division based on (Fig. 1)

the number of clock cycle, respectively. For 1% iteration, 3
clocks are totally used since one cycle is used in each
step of (1), (2), and (3). For 2" iteration, step (2) takes
three cycles since a while-statement repeats three times.
Thus, 5 clocks are totally used after 2™ iteration. The al-
gorithm terminates after 4 iterations, and then 16 clocks
are needed for obtaining final division result, U = x+1.

3. Proposed Algorithm and Fast Divider Design

3.1 Division algorithm

To speeding-up division operation in GF(2'®), we
present an advanced division algorithm without affecting
the basic functionby modifying the binary Extended GCD
algorithm described in (Fig. 1) [2]. (Fig. 2) shows the
proposed algorithm for performing fast division operation
in GF(2'®).

Now, we reconsider classical binary Extended algorithm
described in (Fig. 1). In order to perform GCD operation,
in step (1), A(x) and B(x) are computed depend on the
control bits of wand 1, respectively. Continuously Glx)
and V are computed after completing the check of two
conditions, sy and vp, respectively. Finally, the computa-
tion of both GCD (S, R) and GCD (V, U) is performed
by comparing S to R in step (3).

te| Step | 40k | o | cmoan | o | coaton
(1 1 x'x+l | xPx+l 0 xxtex
1 (2) 2 xUxl | xMexel 0 xxPex
(3) 3 xhx’ x| e | e
(1) 4 xhex x| xbe | e
(2)-1 5 X’ x| kel | ke
2| (2)-2 6 X xtx+1 xHx XK
(2)-3 7 X*+X xHx+l x*+1 XK
(3) 8 x+1 X X1 | xMxel
m-1| 9 x+1 X x*+1 XX
(-2 | 10 x+1 X x*+1 XX
3| (1)-3 11 x+1 1 x+1 x+1
(2) 12 x+1 1 x*+1 x+1
(3 13 X 1 x+1 x+1
(1) 14 X 1 x+1 x+1
4 (2) 15 1 1 x+1 x+1
3 16 0 1 0 x+1

Input : Glx), Alx), B(x)

Output : U has Plx) = Alx) / Blx) mod G(x)
Initialize : R = B(x), S =G= Gx), U = Ax), V=0
while S =0 do

(1) while r0 == 0 or s0 == 0 do

if r0 == 0 then
R=R/x
U = (U+u0 - G)/ x
end if
if s0 == 0 then
5=:8/x
Vo= (Vv - G)/ x
end if
end while

(2)if S = R then
(S, R) = (S+R, R}

(v, U) = (U+V, U}
else
(S, R) = (S, S+R);
(V, U) = (V, U+V):
end if
end while

(Fig. 2) Proposed algorithm for fast division in GF(2'®)

148 ZEHeIEg ==X C H17-CA R2=(20104)

For hardware implementation of this algorithm, a num-
ber of processing time will be needed because final re-
sults are obtained in step (3) after completing the check
of each condition in two while-statements of (1) and (2)
every iteration routine,

In the proposed algorithm, only one while-statement
(see step (1)) is first executed, which is controlled by
two bits of ry and sgand then two if-statements perform
modular reduction within the while-statement. Thus,
modular reduction for (R, U) is performed in statement
“if ro == 0 then” and (S, V) is also performed in state-
ment “if sy == 0 then” depend on the conditions of ry and
so, respectively.

If the proposed division algorithm is implemented in an
iterative hardware structure, these two if-statements in
while-statement can be constructed to each independent
module which is controlled by same clock signal. As a
result, processing time is very fast since each input vari-
able which is need to obtain both GCD (S, R) and GCD

(Table 2) An example of computing division in GF(2') based

on (Fig 2)
Itr Step #Clk S R \Y U
o)) 1| xMxel | xPexel 0 | xMxtex
I @ 2 x| el | edex | xtexex
(-1 3 K | el | Xl | dedex
(1)-2 4 x| xMxel | x| e
’ (1)-3 5 x+1 | el | | xexPex
(2) 6 x+1 X 1| xtexel
(-1 7 x+1 X x| ke
4 m-2| 8 x+1 X X+l | xx
m-3| 9 x+1 1 X1 | xtl
(2) 10 X 1 X x+1
i (1) 11 1 1 x+l x+1
(2) 12 0 I 0 x+1

(V, U) is calculated by using the same clock signal.

<Table 2> demonstrates the proposed algorithm of
(Fig. 2) for computing divisions in GF(2"), where G(x) =
x'tx+l, Alx) = ¥*+x¥+x and B(x) = x*+x+1, which are the
same parameters used in <Table 1>,

As described in <Table 2>, U represents A(x) = x+1
as the final division result, and 12 clocks are used after
completing 4 iterations while in the conventional two dif-
ferent algorithms, 16 clocks [2] and 15 clocks [4] are
used to complete the division operation, respectively.
<Table 3> shows the main distinctive feature of the con-
ventional and proposed algorithms.

3.2 Design of fast divider with iterative structure

(Fig. 3) shows the block diagram of fast divider for
GF(2"™) with iterative architecture on the basis of the
proposed division algorithm.

This divider has three inputs of G(x), A(x), and B(x),
and it obtains P(x) as the final division results after per-
forming operation of “A(x)/B(x) mod G(x)". Init_Controller
block consists of four registers of a size of 163 bits for
storing input vectors and control signals for controlling
the system. Both RU_BIlk and SV_Blk are reduction mod-
ules to play an important role for performing modular re-
duction of (R, U) and (S, V), respectively, and they cor-
respond to 1% if-statements and 2" if-statements in step
(1) of (Fig. 2), respectively. These two modules are oper-
ated by one clock to execute modular operation while two
clock cycles are required for this operation in conven-
tional approach [2].

Thus, the proposed architecture requires no more than
3m clock cycles (after m iterations) to yield the final di-
vision result. (Fig. 4) and (Fig. 5) illustrate detailed block
diagrams of RU_Blk and SV_BIk shown in (Fig. 3),
respectively.

These two reduction modules can be directly designed
from step (1) of our algorithm using three operators of

(Table 3> Comparison of conventional and proposed algorithms

Items \ Algorithms Ref. [2] Proposed
while-statement 3 2
1. In Ist while-statement, R and U are 1. In Ist if-statement, R and U are
Froesssing sequency o Soding: GCD e Ears::\n?;f;ﬁmmmn S and V are 2 :::k;nllzt?fd-statement, S and V are
calculated calculated
Total iteration | Condition of (R=0) or (5=0) 2m+2 3m
times Condition of (R#0) and (S=0) m(m+2) 3m
Clock cycle in GF(2") 16 12

G(x)A(x)B(x)

=+ v v

Init_Controller
u S

T 1T 13

I

I: R(0]

s[0]

RU_BIk SV_BIk
R U s v
1 v

Post_Bu f’fe_r R[O]

I -

I S
=g =

(Fig. 3) Architecture of fast divider for GF(2'®)

XOR, MUX, and Shifter (>>). Note that computation
results of RU_Blk and SV_BIlk are simultaneously trans-
ferred into Post_Buffer block using one clock.

(Fig. 6) shows a detailed block diagram of GCD_Cal
shown in (Fig. 3). It also can be directly derived from
step (2) of our algorithm using four operators of XOR,
MUX, INV and CMP (Comparator), where INV (Inverter)
is used for handling else-statement described in step (2).

This module performs mainly arithmetic operations for
comparison (CMP) and addition (XOR) using four param-
eters calculated in previous modules, and it outputs oper-
ation results after a given clock cycles.

For hardware implementation, the previous division al-
gorithm[2] needs several processing time because reduc-
tion operation for variable sets, (U, R) is first performed
in step (1) of 1" while-statement and then variable sets
of (S, V) are caculated in step (2) of 2" while-statement.

It should be noted here that two modules for perorm-

gt GFE)AMOIA lterative LEsSM7| &7 149

r

‘%
vio] [(=> 1
s10]

[MUX

S

(Fig. 5) Block diagram of SV_BIk

UX 1 I

ing modular reduction in designed divider are controlled
by same common clock while conventional approaches [2]
requires different two clcok signals for this modular
reduction.

4. Implementation Results

In this paper, we use reduction polynomial f(x), f(x)
=x'4x"+x"+x+1, that is recommended in SEC2 (Standards

R s v v
r B | I |
D [cwp > | | [xor
[T
[o mux 1 [omux + —F—J owmux 1] 0 MUX 1 |
\j Y Y \J
R s v v

(Fig. 6) Block diagram of GCD__Cal

150 FEXIEZ=2XC HI7-CH H25=(20104)

for Efficient Cryptography) [11] using standard basis rep-
resentation, where an irreducible binary polynomial of de-
gree m=163 is used.

The proposed division algorithm was described using
Verilog HDL at the Behavioral level, and it has been
successfully implemented with Xilinx FPGA using the
ISE 6.x. tool. To verify functionality of the designed di-
vider, timing simulation is performed using Xilinx simu-
lator and Mentor Graphics ModelSim™. (Fig. 7) shows
the timing simulation result of the designed divider for
GF(2'®) using Xilinx simulator.

To compare performance of conventional algorithm to
the proposed algorithm, the set of input data used for
this simulation[4] is as follows: A(x) = X+ +x+1, B(x) =
Lred+x, Gx) = P+l

In (Fig. 7), ax, bx gx and px represent A(x),
B(x), Glx), and P(x), respectively, which have each 163
bits. Through simulation result, we can see that
P()=x"+x*+x’+1 (% in Hexa-decimal) is obtained as the
output result after 23ns delays while the result of the
conventional approach[2] is obtained after 33ns delays.
Implementation result is summarized in <Table 4>, which
is obtained from logic synthesis using Xilinx ISE 6.x.
tool, where FPGA target device used is Xilinx-VirtexIl
XC2V8000£f1152-5.

<Table 5> shows comparison of synthesis results be-
tween three diffenrent algorithms which are implemented
with Xilinx-VirtexIl FPGA device using the ISE 6.x. tool.

In order to provide a fair comparison, we have im-
plemented directly conventional two algorithms [2 4] in

(Table 4) Implementation result

Registers 5 (163-bit)
Comparator 2 (163-bit)
HDL Synthesis

Muxs 3 (163-bit 4-to-1)
Xors 2 (163-bit xor2)
BELS 2297
FFs/Lats 817

Cell Usage
No. of Slices 967
No. of LUTs 1,644

Timing Min. period 11.7ns (85MHz)
Summary | Min, input arrival time | 6.7ns
Total equivalent gates 18,988

hardware with Xilinx-VirtexIIFPGA device using Verilog
HDL. As can be seen from <Table 5>, we can see that
the proposed method is not only shorter critical path de-
lay(Clock period) than conventional approaches, but also
hardware overhead is smaller than two approaches [2, 4].

<Table 6> shows the comparison of the number of
clock for three different algorithms which are obtained
from implementation results..

In comparison of “#Clocks” of <Table 6>, we showed
the proposed method is approximately reduced by 26 %
and 47 % for GF(2®), and by 26 % and 40 % for
GF(2*), respectively, compared to two conventional meth-
ods [2, 4] Also, <Table 7> shows the comparison oftotal
delays for three different algorithms.

gllclk

ol start

glirst_n
B Pla_162:0]
B Bdb_162:0]
2 BAo_x[162:0]
& B p_x{162:0]
B B tmp1(162.0]
& B tmp2(162:0]
o BAtmp3[162:0] |

& B tmpd[161:0]
B Bdo161:0]
o §d{162:0]
[+] ’lsh 62:0]
o PAu[162:0]
o Bdv{162:0]

(Fig. 7) Timing simulation result

HAME 017 =E GCD YNBSS 714t GFE™)AIAM lerative LM 7| AH 151

(Table 5> Comparison of synthesis results

Items \ Algorithms Ref. (2] Ref. [4] Proposed
Clock period(ns) 126 134 HF
#Slices 1,092 1,034 967

{Table 6 Comparison of the number of clock

Items \ Algorithms Ref. [2] Ref. [4] Proposed
GF(2) 3 3 23
GF(2'%) 55 64 42
#Clocks
GF(2™) 92 128 68
GF(2™) 207 256 154

(Table 7> Comparison of total delays (ns)

Items \ Algorithms Ref. [2] Ref. [4] | Proposed
GF(2®) 346 386 260
Total GF(2') 693 858 5%
delay(ns) | GR(2®) 1,150 1715 850
GF(2™) 2,608 3,430 1,925

In <Table 7>, “Total delay” means overall delay time
required to obtain final division result. In comparison of
total delay time, compared to two conventional methods
[2, 4], the proposed method is approximately improved by
2% and 50% for GF(2¥), and by 24% and 44% for
GF(2*), respectively. This is because that the number of
the used clocks is dramatically reduced compared to con-
ventional two approaches. The designed divider operates
at a clock frequency of 8 MHz on Xilinx—VirtexIl
XC2V8000 FPGA device.

5. Conclusion

A fast division algorithm in GF(2'™) using standard
basis representation has been presented based on the bi-
nary Extended GCD algorithm, where reduction poly-
nomial f(x)=x'®+x"+x"+x*+1 is used[11]. The proposed al-
gorithm has been implemented in divider for GF(2'™) of
the iterative hardware structure with less latency on a
FPGA. Through implementation results, we have shown
that the computation speed of our approach is sig-
nificantly improved than that of two conventional ap-

proaches [2, 4] due to reducing the number of the used
clocks.

The designed divider for GF(2'®) operates at a clock
frequency of 85 MHz on Xilinx-VirtexIl XC2V8000 FPGA
device. The proposed hardware structure is suitable for
high-speed cryptographic applications such as elliptic
curve cryptosystem.

References

[1] W. Stallings, Cryptography and Network Security:
Principles and Practice, 2nd Edition, New Jersey, Prentice
Hall Inc., 1999.

[2] D. E. Knuth, The Art o Computer Programming:
Semi-numerical Algorithms, Addison-Wesley, 3rd ed.
Reading, MA, 1998.

[3] J. Guo, and C. Wang, “Systolic Array Implementation of
Euclidian's Algorithm for Inversion and Division in GF,”
IEEE Trans. Computers, Vol.47, No.10, Oct., pp.1161-1167,
1998.

(4] C.-H. Kim, S.-H. Kwon, J.-]. Kim, and C.-P. Hong, “A
Compact and Fast Division Architecture for a Finite Field,”
Proc. ICCSA2003, LNCS, Vol.2667, pp.855-864, Aug., 2003.

[B] N. Sklaves, K. Papadomanolakis, P. Kitsos and O.
Koufopavlou, “Euclidean Algorithm VLSI Implementations,”
ProcIEEE-ICECS'02, Vol. 11, pp. 557-560, Sep., 2002.

[6] H. Brunner, A. Curiger, and M. Hofstetter, “On Computing
Multiplicative Inverses in GF(2"),” IEEE Trans. on
Computers, Vol.42, No.8, pp.1010-1015, Aug., 1993.

[7] R. Kannan, G. Miller, and L. Rudolph, “Sublinear Parallel
Algorithm for Computing the Greatest Common Divisor of
Two Integers,” SIAM Journal on Computing, Vol.16, No.1,
pp.7-16, 1987.

[8] Sidi Mohamed Sedjelmaci, “A Parallel Extended GCD
Algorithm,” J. of Discrete Algorithms, Vol.6, No.3, pp.526-
538, 2008.

[9] A. Daly, W. P. Mamnane, T. Kerins, and E. Popovici, “Fast
Modular Division for Application in ECC on Reconfigurable
Logic,” 13th International Conference FPL 2003, pp.786-795,

[10) G. M. de Dormale, P. Bulens, and J.-]. Quisquater, “Efficient
Modular Division Implementation (ECC over GF(p) Affine
Coordinates Application),” 14th Intemational Conference FPL
2004, 23-240, Aug., 2004.

[11] Certicom Research, “SEC2: Recommended Elliptic Curve
Cryptography Domain Parameters,” 1999.

152 FEX2I=E=EX C H17-CH HM2=(2010.4)

Z 2y
e-mail : mskang@anyang.ac.kr
19799 F&digh AA-FAF eI}
1984 @i &t A A3 shah(F e AL
1992d d& eAteta AA-F KT
uhAL)
19849 ~1992¢ FFHAFNATY 49
a7
20014 University of California, Irvine 27]78448 83 Ada+4
19939 ~d A g AFETSS A
HAEok: VLS HAE, 4T E2HA 47|, A5He, YEHA
B¢k RFID/USN

4y
e-mail : cad_jbc@naver.com
2008'd rFoisa HFE (AL
20089 ~d A AFdFw HFE
A Aahg
FAEok: gE Z2AAM A, YENZ
ek RFID/USN

