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Fast Self-Similar Network Traffic Generation Based on
FGN and Daubechies Wavelets

HaeDuck J. Jeong" - JongSuk R. Lee'"

ABSTRACT

Recent measurement studies of real teletraffic data in modern telecommunication networks have shown that self-similar (or fractal) processes
may provide better models of teletraffic in modern telecommunication networks than Poisson processes. If this is not taken into account, it can
lead to inaccurate conclusions about performance of telecommunication networks. Thus, an important requirement for conducting simulation
studies of telecommunication networks is the ability to generate long synthetic stochastic self-similar sequences. A new generator of pseu-
do-random self-similar sequences, based on the fractional Gaussian nois and a wavelet transform, is proposed and analysed in this paper.
Specifically, this generator uses Daubechies wavelets. The motivation behind this selection of wavelets is that Daubechies wavelets lead to more
accurate results by better matching the self-similar structure of long range dependent processes, than other types of wavelets. The statistical
accuracy and time required to produce sequences of a given (long) length are experimentally studied. This generator shows a high level of accu-
racy of the output data (in the sense of the Hurst parameter) and is fast. Its theoretical algorithmic complexity is O(n).

IINE : Self-similar Z2AMA(Seif-Similar Process), Teletraffic 447)(Teletraffic Generator), Fractional Gaussian Noise,
Daubechies Wavelet, Complexity, Hurst ¥5(Hurst Parameter)

1. Introduction

The search for accurate mathematical models of data
streams in modern telecommunication networks has at-
tracted a considerable amount of interest in the last few
years. Several recent teletraffic studies of local and wide
area networks, including the World Wide Web, have shown

that commonly used teletraffic models, based on Poisson
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or related processes, are not able to capture the self-similar
(or fractal) nature of teletraffic [1-4], especially when these
networks are engaged in such sophisticated services as
variable-bit-rate (VBR) video transmission [5-7]. The pro-
perties of teletraffic in such scenarios are very different
from both the properties of conventional models of tele-
phone traffic and the traditional models of data traffic gen-
erated by computers.

The use of traditional models of teletraffic can result in
overly optimistic estimates of performance of telecommu-

nication networks, insufficient allocation of communication
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and data processing resources, and difficulties in ensuring
the quality of service expected by network users [3,8, 9].
On the other hand, if the strongly correlated character of
teletraffic is explicitly taken into account, this can also lead
to more efficient traffic control mechanisms.

Several methods for generating pseudo-random self-
similar sequences have been proposed. They include meth-
ods based on fast fractional Gaussian noise [10], fractional
ARIMA processes [11], the M/G/oo queue model [1, 6], au~
toregressive processes [12], spatial renewal processes [13],
etc. Some of them generate asymptotically self-similar se-
quences and require large amounts of CPU time. For exam-
ple, Hosking’s method [11], based on the F-ARIMA(0, d, 0)
process, needs 1.5 hours to produce a self-similar sequence

with 131,072 (2'") numbers on a Pentium I [1, 14]. It re-

quires O( #%) computations to generate n numbers. Even
though exact methods of generation of self-similar se-
quences exist (for example [10]), they are only fast enough
for short sequences. They are usually inappropriate for
generating long sequences because they require multiple
passes along generated sequences. To overcome this, ap-
proximate methods for generation of self-similar sequences
in simulation studies of telecommunication networks have
been proposed [15, 16].

The evaluation of our generator based on Daubechies
wavelets (DW) concentrates on two aspects. (i) how accu-
rately a self-similar process can be generated ; and (i)} how
quickly the method generates long self-similar sequences.
Our method, based on the fractional Gaussian noise (FGN)
and Daubechies wavelets, will be called the FGN-DW
method.

A summary of the basic properties of self-similar proc-
esses is given in Section 2. Section 3 describes the spectral
density of FGN processes, while a discrete wavelet trans—
form (DWT) for synthesising approximate FGN is pre-
sented in Section 4. In Section 5, a generator of pseu-
do-random self-similar sequences, based on FGN and DW,
is described. ‘Numerical results of analysis of sequences

generated by this generator are discussed in Section 6.

2. Self-Similar Processes and Their Properties

2.1 Mathematical Definition of Self-Similarity
One can distimguish two types of stochastic self-simil—-

arity. A continuous-time stochastic process Y, is strictly

self-similar with a self-similarity parameter H(1/2< H {1),

if Y, and ¢Y, (the rescaled process with time scale ct)
have identical finite-dimensional probability for any pos-
itive time stretching factor ¢ [17-19]. This means that, for

any sequence of time points #,, ¢;, -+, ¢,, and for any ¢> 0,
Yo, Yoo, Yo)= {CHYtu CHY[;’ et v}

where = denotes equivalence in distribution. This defi-
nition of the strictly self-similarity is in a sense of proba-
bility distribution (or narrow sense), quite different from
that of the second-order self-similar process (or self-sim-
ilar process in a broad sense). Self-similarity in the broad
sense is observed at the mean, variance and auto-correla-
tion level, whereas self-similarity in the narrow sense is
observed at the probability distribution level.

When the weakly continuous-time self-similar process

Y, has stationary increments, i.e., the finite- dimensional
probability distributions of Y, ,,— Y, do not depend on
t;, we can construct a stationary incremental process
X={X,=Y,,,—Y;: i=0,1,2,---}. Namely, in the dis-
crete-time case, let X be a (discrete-time) stationary in-
cremental process with mean p¢= E[X], variance ¢%=

E[(X—)?], and (normalised) auto-correlation function
(ACF) {p,}, #=0,1,2, -, where

E[(X;— o)X 11— )]
op= g . (1)

X is strictly stationary if {X,, X, X;}and {X .,
X iww o X 44} ossess the same joint distribution.

However, we limit our attention to processes with a weaker

form of stationarity, ie., second-order stationarity (or weak,

broad, or wide sense stationarity). Let X ={X{",

X -}, m=1,2,3,-, be a sequence of batch means,

that is,
(m_ 1 .
XM= Z (X gy bk X 2L @

and let { o™} denote the ACF of X . The process X is

called exactly second-order self-similar with 1/2 (H <1,
if for all m=1,

oy =0, k=20 (3)

In other words, the process X and the aggregated proc-

esses X " m =1, have an identical correlation structure.
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The process X is asymptotically second-order self-similar
with 1/2<H <1, if for all k large enough,

py™ — oy, as m — oo, (4)

The most frequently studied models of self-similar traffic
belong either to the class of fractional autoregressive in-
tegrated moving-average (F-ARIMA) processes or to the
class of fractional Gaussian noise processes ; see [1, 11, 16].
F-ARIMA(p, d, q) processes were introduced by Hosking
[11] who showed that they are asymptotically self-similar
with Hurst parameter H=d+1/2, as long as 0 <d < /2.
where p is the order of autoregression in the ARIMA proc-
ess and ¢ is the order of the moving average in the ARIMA
process. For the second class, the FGN process is the in-
cremental process { ¥} ={X,— X ,_ .}, £#= 0, where { X}
designates a fractional Brownian motion (FBM) random
process. This process is a (discrete-time) stationary Gaus-
slan process with mean g, variance o2 and {p,}={1/2
e+ 1127 =21 k¥ + 1k—1/*")}, k>0. An FBM process,
which is the sum of FGN increments, is characterized by
three properties [20]. (i) it is a continuous zero-mean Gaus-
sian process {X}={X,:s=0 and 0< H (1} with ACF
given by p,,=1/2(s ¥+ ¢*¥—|s—t|*') where s is time
lag and ¢ is time ; (ii) its increments {X,— X, ,} form a
stationary random process ; (iii) it is self-similar with
Hurst parameter H, that is, for all ¢ >0, {X,} = { "X},
in the sense that, if time is changed by the ratio ¢, then

{ X} is changed by ¢”.

22 Properties of Long-Range Dependent Self-Similar
Processes

Main properties of self-similar processes include ({1, 17,
21D.

e Long-range dependence : A process { X,} is called a

stationary process with long-range dependence (LRD)
if its ACF {p,} is non-summable, ie, 2, o,= . The
k=0

speed of decay of auto-correlations is more hyperbolic
than exponential. Another definition of LRD is given by

O~ LR @72 a5 f— oo, (5

where 1/2<H<1 and L( -) slowly varies at infinity,

L(xt)

TN 1, for all x>0 ; see [1]. The Hurst

Le., lim
t— 00

parameter H characterises the relation in (5), which
specifies the form of the tail of the ACF. -

Slowly decaying variance . The variance of the sample
mean decreases more slowly than the reciprocal of the
non-overlapping batch size m, ie., Var[{X{"}]—

c,m™®, as m— oo, where ¢, is a constant and 0 <4, <1.

Hurst effect - Historically, the importance of self-similar
processes lies in the fact that they provide an elegant
explanation and interpretation of strong correlations in
some empirical data. Namely, for a given sequence of
random variables X={XJ}/-; = {X,,X,,*--,X,}, one
can consider the so-called rescaled adjusted range
R(t,m)/ S(t, m) (or R/S-statistic), with

R(¢, m)= max i[N,J,,.—N,——-:;l—(NH,,,—N,),Os i<m)

— min ,»[NH,-—N,—-;;*(NH,,,-—N,),OS i<ml,
®)

t
where 1<¢<#n, m is the batch size and N,= 2, X, ; and
=1

t+m

S(t, m)=\y[m"l Zl(Xi— Y,,m)z, (7

1=t

— t+m
where X,,=m ' X X,
i=t+1
Hurst found empirically that for many time series ob-
served in nature, the expected value of R(¢, m)/S(¢, m)

asymptotically satisfies the power-law relation :

R(t, m)

— H — 1 :
S(m) 1= c;m” as m— oo, with 1/2< H< 1,

E[
where ¢, is a finite positive constant [17]. This empirical
finding was in contradiction to previously known resuits
for Markovian and related processes. For a stationary
process with SRD, E[ R (¢, m)/S(¢, m)] behaves asymp-
totically like a constant times m'/?
values of m, the R/S-statistic plot is randomly scattered
around a straight line with slope 1/2. Hurst’s finding

. Therefore, for large

that for the Nile River data, and for many other hydro-
logical, geophysical, and climatological data, R(¢, m)/
S(t,m) is randomly scattered around a straight line
with slope H >1/2, is known as the Hurst effect, and
H is known as the Hurst parameter (or self-similarity
parameter). Mandelbrot and Wallis [20] showed that the
Hurst effect can be modelled by FGN with the self-sim-
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ilarity parameter 1/2 ¢ H < 1.
¢ [/f-noise : The spectral density f(A; H) obeys a power
law near the origin, i.e., f(A; H) —c;A' "% as A—0,

where c; is a finite positive constant and 1/2< H <1.

We will use these properties to investigate characteristics

of generated self-similar sequences.

3. Spectral Density of FGN Processes

In our generator, numbers representing the spectral den-
sity function of FGN are obtained by applying appropriate
transformations to originally uniformly distributed pseu-
do-random numbers. The spectral density f(4; H) of an
FGN process is given by

f(/I;H)=26/(1~cos(/1))kA§ 2k Al (®)

for 0<H<1and —7 <A<z, where ¢,= 6%(27) " 'sin
(zH)T(2H+1) and o= Var[X,]; see [17].

The main difficulty with using Equation (8) to compute
the spectral density is the vexing infinite summation. The

approximation of the above f(A; H) is given in [17] as
f(/i;H)=C/|/]|172H+ O(|Mmin(372H,2)) (9)

where O( + ) represents the residual error.

A generator of self-similar sequences based on FGN was
also proposed by Paxson [16], but his method was based
on a more complicated approximation of f(4; H) than this

one given by Equation (9).

4. Discrete Wavelet Transform

Our method for generating synthetic self-similar FGN
sequences in a time domain is based on the discrete wavelet
transform (DWT). It has been shown that wavelets can
provide compact representations for a class of FGN proc-
esses [22, 23]. This is because the structure of wavelets na-
turally matches the self-similar structure of the long range
dependent processes [24]. Wavelets are complete ortho-
normal bases which can be used to represent a random time
series in two domains : time and frequency. In Hilbert
space L*(R), scaled and shifted functions ¢; ,,(%) of wave-
lets can be represented as ¢, ,,(k)=2""¢ (27 k—m)

where j and m are positive integers [25]. Since such wave-

lets are obtained by scaling and shifting a single function,
¢o(k), $o(k) is called the mother wavelet. Moreover, all
base functions ¢ ; ,,(# have the same shape as the mother
wavelet and therefore are self-similar with each other.
For our generator, we chose Daubechies wavelets, which
belong to the class of orthonormal wavelets, because they
produce more accurate coefficients of wavelets than Haar
wavelets (for more detailed discussions, see also literature

in [26,27] ; and our results of the comparison in Section 6).

1 .
They are defined as ¢(k)= 3 (—1)p,_.¢(2k—1),
i S+1

fr= —

where {2} is the two-scale sequence of ¢(%) and ¢(k)=

25
3 p:$(2k—1). A discrete-time process {X,} can be rep-
=1

S 251
resented through its inverse DWT {X,}= 2, 2 d;n
=1 m=0
¢, (&), where 0 < £<2%;and S is a positive integer
which characterizes the limited resolution in time ; and
d; . s are wavelet coefficients which can be obtained

25-1

through the DWT, since d; ,,= t:EO X m(k).

4.1 Daubechies Wavelets

Daubechies discovered one of the original wavelet fami-
lies [26). This family contains a single wavelet for each
possible even valued filter length, beginning with four
coefficients. As the filter length grows, the wavelets move
from highly localized (due to the small number of non-zero
filter coefficients) to highly smooth (for larger numbers of
coefficients). The formation of the smallest of this family
of wavelets, often referred to as Daub(4), which stands for
the Daubechies wavelets with four coefficients, is calcu-
lated below [26].

The transformation matrix for a Daubechies wavelet of

length four is given by the below matrix.

¢ ¢ ¢ ¢ 0 0 0
Cy —Cy €1 — 0 0 0

0 0 ¢ ¢ ¢ ¢ 0 ...
0 0 Cy3 —™Cy € —C 0 ... (10)

Cy € C2 (3

‘e Cy —Cy C] —Cy
c; ¢y 0 ... o 00 ¢ o
¢y —¢ 0 0 0 c¢3 —c

The odd rows of this matrix represent a convolution of
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the data vector with the coefficients [¢,, ¢, ¢, ¢;]. These
rows can be efficiently calculated due to its sparsity (re-
quiring four multiplications and three additions per data
value). The even rows of this matrix represent a con-
volution of the data vector with the coefficients [¢,, — ¢,
¢1, = ¢;l. They are also efficiently calculated, requiring the
same number of operations. The total effect of this oper-
ation is to convolve the data vector with two different
four-coefficient filters and reduce the results by a factor
of two.

The inverse (reconstruction) transform is the inverse of
this matrix, and is equal to its transpose. It can be used
to generate the following requirements for the wvalues

[Co, Cy, Co, C3]~

citeci+cel+cd =1

coxcotcixcy = 0.
0X CaT C1xC3

For the values of these coefficients to form the desired
high- and low-pass filters, we must also require :

c3—cyte,—cy =0
O0xcy—1xcy+2xc;—3xc¢cy =0.

The unique solution to these four equations is.

¢ = (1+V3)/4xV2
e = 3+V3)/4xV2
c; = (3-V3)/4xV2
e = (1-V3)/4 V2.

This same general method can be used to form Daube-
chies wavelet filter values for any even filter length greater
than four.

The Daub(4) DWT of an input data vector is calculated
as follows (this method assumes a data vector length that
is a power of two; the use of other lengths requires special
treatment).

Given the data vector.
[¥o ¥1 Y2 ¥3 ¥4 ¥5 Y6 ¥1 Y5 ¥g Y10 Y1 Y12 Y13 Yu Y151,

transform it with (multiply by) the forward matrix (10) to

give .
[yo dy ¥y dy ¥2 dy 3 dy ¥y dy ¥5 d5 ¥5 ds ¥; d; ],

where s, are smooth responses (low-pass) and d, are de-

tail responses (high-pass). This vector is then permuted

to collect the smooth and detail areas as follows :
[Sg S) S9 83 34 55 Sg S7 do dl d2 d3 d4 ds dﬁ d7].

For a DWT, this process is then iteratively repeated on
the smooth values to obtain the following :

[SO DO Sl Dl SZ D2 SH D3 dO dl dZ d3 d4 d5 dﬁ d7]’
and then permuted to.
[Sy S\ S; S3 Dy Dy, Dy Dy dy dy d; dy dy ds dg dy].

In this example we must now stop, as the length of the
next smooth sub-vector (length four) equals the length of
the analysis filter (length four). Reconstruction is an exact
reversal of this procedure, using the transpose (inverse) of
the forward transform matrix.

For our generator, we chose Daubechies wavelets be-
cause they produce more accurate coefficients of wavelets
than Haar wavelets (for more detailed discussions, see also

[26,27] ; and our results of the comparison in Section 6.

5. A Fast Algorithm for Generating Self-Similar
Teletraffic

We present a new generator of pseudo-random self-sim-
ilar sequences based on fractional Gaussian noise (FGN)
and Daubechies wavelets (DW), called the FGN-DW meth-
od [28]. A pseudo-random generator of self-similar tele-
traffic based on Haar wavelet transforms has been pro-
posed in [29, 30] and [31]. We used Daubechies wavelets
because the generator based on Daubechies wavelets pro-
duces more accurate self-similar sequences than one based
on Haar wavelets. In other words, not only estimates of
H obtained from the Daubechies wavelets are closer to the
true values than those from the Haar wavelets, but also
variances obtained from the Daubechies wavelets are
lower. The reason behind is that the Daubechies wavelets
produce smoother coefficients of wavelets that are used in
the discrete wavelet transform than the Haar wavelets [26,
27, 32]. Haar wavelets are discontinuous, and they do not
have good time-frequency localisation properties, since
their Fourier transforms decay as |A| !, for A— oo, mean-
ing that the resulting decomposition has a poor scale.
Therefore, Daubechies wavelets produce more accurate co—-
efficients than Haar wavelets; for a more detailed dis-
cussion, see [26, 27].

Our method for generating synthetic self-similar FGN
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sequences in a time domain is based on a discrete wavelet
transform (DWT). Wavelets can provide compact repre-
sentations for a class of FGN processes [22, 23, 32], because
the structure of wavelets naturally matches the self-similar
structure of long-range dependent processes [24, 26, 27].

We claim that the FGN-DW method is sufficiently fast
for the practical generation of synthetic self-similar se—
quences that can be used as simulation input data. The
general strategy behind our method is similar to Paxson’s,
who used the Fourier transform [16]. Figure 1 graphically
illustrates a discrete Fourier and a discrete wavelet trans—
form. Wavelet analysis transforms a sequence onto a time-
scale grid, where the term scale is used instead of fre-
quency, because the mapping is not directly related to fre-
quency as in the Fourier transform. The wavelet transform
delivers good resolution in both time and scale, as compared
to the Fourler transform, which provides only good fre-
quency resolution. The algorithm consists of the following

steps.

Step 1 : Given : H. Start for i =1 and continue until ¢ = n.
Calculate a sequence of values {#,, 7, =+, /,} us-

A

Frequency

fo

ty Time

(a) A discrete Fourier transform

ing Equation (9), where f,= 7(xi/n; H), corre-
sponding to the spectral density of an FGN proc-
ess for frequencies £, ranging between x/# and
7. The main difficulty with using Equation (8)
when computing the spectral density is that it re-
quires to execute the infinite summation.
This formula was used in the generation of self-
similar sequences proposed in this paper. Another
generator of self-similar sequences based on FGN
was also proposed by Paxson [16], but his method
was based on a more complicated approximation
of (A, H) as shown in Equation (8). Equation (9)
can be used to determine f(A, H) for A— oo, or
for n— o0 at A =nx/n For a large value of A,
F(A, H) can be calculated by Equation (8).
Step 2 : Multiply {f;} by realisations of an independent
exponential random variable with a mean of one
to obtain { 7}, because the spectral density esti-
mated for a given frequency is distributed asym-
ptotically as an independent exponential random
variable with mean f(A, H) {8].

Scale

fo

N

D000

ty Time

N

(b) A discrete wavelet transform

(Figure 1) A graphical representation of a discrete Fourier transform and a discrete wavelet transform

Step 3 : Generate a sequence {Y;, ¥y, -, Y,} of complex

numbers such that | Y} =\/_§_,< and the phase of
Y; is uniformly distributed between 0 and 2z
This random phase technique, taken from Schiff
[33], preserves the spectral density corresponding
to{ 7,}. It also makes the marginal distribution

of the final sequence normal and produces the re-
quirements for FGN.

Step 4 : Calculate the two synthetic coefficients of ortho-

normal Daubechies wavelets that are used in the
inverse DWT (IDWT) [34] ; also see Appendix A.
The output sequence {X;, X,, -, X,} represent-
ing approximately self-similar FGN process (in
time domain) is obtained by applying the IDWT

operation to the sequence {Y,, Y,, ", Y,}.

Using the previous steps, the proposed FGN-DW method
generates a fast and sufficiently accurate self-similar FGN

process {X|, X,,,X,}. (Appendix A provides a program
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written in Matlab for implementing this method using the
pyramidal algorithm of IDWT) It took 16 seconds to gen-
erate a sequence of 1,048576 numbers on a Pentium II (233
MHz, 512 MB). Its theoretical algorithmic complexity is
O(n). Moreover, the accuracy of Daubechies wavelets is
slightly better than Haar wavelets, but there is no differ-
ence in the time taken to obtain the same number of

coefficients.

6. Analysis of Self-Similar Sequences

The generator of self-similar sequences of self-similar
pseudo-random numbers described in Section 5 has been
implemented in Matlab on a Pentium I (233 MHz, 512 MB);
see Appendix A. The mean times required for generating
sequences of a given length were obtained by using the
Matlab clock command and averaged over 30 iterations,
having generated sequences of 32,768 (215, 131,072 (2'7),
262,144 (2'), 524,288 (2% and 1,048576 (2%°) numbers.

We have also analysed the efficiency of the method. For
each of H = 0.6, 0.7, 0.8 and 0.9, the method was used to
generate over 100 sample sequences of 32,768 (2% num-
bers starting from different random seeds. Self-similarity
and marginal distributions of the generated sequences were
assessed by applying the best currently available estima-
tors : the wavelet-based H estimator and Whittle's MLE.

o Whittle's approximate maximum likelihood estimate
(MLE) : for a more refined data analysis, used to obtain
confidence intervals (CIs) for the Hurst parameter H
[17]. On the other hand, it examines the properties in
frequency domain, while the R/S statistic plot and var-
iance-time plot focus on the time domain. Suppose
{x;, x5, +,x,} is a sequence of a self-similar process
{X,} for which all parameters are known except
Var[X,] and H. Let f(A;H) be the spectral density
of {X,} when normalised to have variance 1, and I(4)

be the periodogram of {X,}. Then to estimate H, find

A that minimises the following equation: g(H)=
[ i@ ma

¢ Wavelet-based H estimator : The original wavelet-
based H estimator, proposed by Abry and Veitch in 1998
[24], is a computationally simple and fast estimator
based on a wavelet transform, with a fast pyramidal al-

gorithm for the wavelet transform, with its complexity

of order O(#n). However, as argued in [35] this estimator
suffers from a bias associated with its log-log regression
component. Later, Veitch and Abry [35] proposed a new
improved method of estimation of the H parameter with-
in a so-called wavelet-based joint estimator, which al-
lows us to estimate both H and so-called power parame-
ter, an independent quantitative parameter with the unit
of variance; see [35] and [36] for details. The resulted
wavelet-based H estimator, that we further simply call
the wavelet-based H estimator, is asymptotically un-
biased and (almost) the most efficient [35]. For detailed

discussions, see [37].

6.1 Comparison of Daubechies Wavelets and Haar Wavelets
for Generation of LRD Sequences

The estimates of the Hurst parameter obtained from the

wavelet-based H estimator and Whittle's MLE, have been

used to analyse the accuracy of the generator. The relative

inaccuracy 4H is calculated using the formula : dH=
((A — H)/H)*100%, where H is the required value of the

Hurst parameter and A is the empirical mean value over
a number of independently generated sequences. The pre-
sented numerical results are all averaged over 100
sequences.

Comparison results of sequences produced by generators
based on Haar and Daubechies wavelets with several co-
efficients are shown in Tables 1 and 2. The relative error
associated with each wavelet were also compared. The re-
sults indicate that Daubechies wavelets with sixteen co-
efficients produce the most accurate results and are slightly
more accurate than Haar wavelets. In addition, <Table 3>
and <Table 4> show that the variances obtained from
Daubechies wavelets are smaller than those obtained from
Haar wavelets. However, the two wavelets theoretically re-
quire the same O(n) operations to transform = coeffi-
cients of their wavelets, and there is no difference in the
time required to obtain a given number of their coefficients.
For more detailed discussions of Haar wavelets, see {26, 27].

6.2 Analysis of Hurst parameters
The results for the wavelet-based H estimator and
Whittle's MLE of H with the corresponding 95% Cls

H+1.96 7, , see <Table 1> and <Table 2> for Daub(16),
show that for all input H values, the FGN-DW method pro-

duces sequences with negatively biased H values, except
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H =06, for the wavelet-based H estimator. The FGN-DW

method demonstrated a high level of accuracy and was fast.

(Table 1) Comparison of Daubechies wavelets and Haar wavelets : mean values of estimated H obtained using the wavelet-based
H estimator for H =06, 0.7, 0.8 and 0.9. Daub(#) stands for the Daubechies wavelets with # coefficients.

Mean Values of Estimated H and 4H
Methods 6 7 8
n JH(%) n JH(%) n JH(%) n JH(%)
6073 7141 17 9299
Haar (580, 635) 1220 (687, 742) +2018 (794, 849 2712 (902, 98 3321
6019 6984 7943 8898
Dauh(2) (574, 630) +0.323 (671, 7%) 022 (767, 322) 0.709 (862, 917) 1137
6026 7039 _ 8055 9074
Daub(4) (575, 630) 10433 (676, 731) +0564 (778, 833) 0684 (880, 935) 0821
6026 7031 8039 9049
Daub(#) (575, 630) +0.430 (676, 731 0445 (776, 831) *0.486 (877, 932) 054
6013 6987 7962 8938
Daub(16) (574, 629) *0214 (671, 726) 018 (769, 824) 0474 (866, 921) 0654

{Table 2> Comparison of Daubechies wavelets and Haar wavelets : mean values of estimated A obtained using Whittle's MLE for
H=06, 0.7, 0.8 and 0.9. Daub{#) stands for the Daubechies wavelets with # coefficients.

Mean Values of Estimated H and 4H
Methods 6 7 8
n 2H(%) n 2H(%) 7 2H(%) n 2H(%)
5766 6567 739 8056
Haar (567, 556) ~3.905 (647, 666) 6188 (731, 749) 7508 (817, 835) 8263
5814 , 6662 i 753 i 38 i
Daub(2) (572, 591) 3106 (657, 676) 4829 (744, 763) 5813 (834, 852) 6.357
8% , 6702 i 759 i 8194 i
Daub(4) (574, 59) 276 (661, 6%0) 424 (750, .768) 5127 (840, 859) 5620
845 o 6719 i 7612 o 8520 B
Dauh(8) (575, 504) 2578 (663, 681) 4017 (752, TI0) 48 (843, 861) 536
5849 6725 ‘ 7620 - 8530 .
Daub(16) (575, 594) B (663, 682) 3924 (753, 77D 4745 (844, 862) 2223

(Table 3> Variances of estimated H obtained using the wave-
let-based H estimator for Daubechies wavelets and
Haar wavelets for #= 0.6, 0.7, 0.8 and 0.9. Daub
(#) stands for the Daubechies wavelets with #

coefficients.
Methods Variances of Estimated H
6 q 8 9

Haar 2.070e-04 | 2.263e-04 | 2.534e-04 | 2923e-04
Daub(2) 1.949e-04 | 2.154e-04 | 2.393e-04 | 2.670e-04
Daub(4) 2508e-04 | 2540e-04 | 2586e-04 | 2.645e-04
Daub(8) 2440e-04 | 2.432e-04 | 2438e-04 | 2.456e-04
Daub(16) 2.116e-04 | 2.055e-04 | 2.007e-04 | 1.973e-04

6.3 Autocorrelation Test and Seguence Plot for the FGN-
DW Method
ACFs characterise the correlation structure and are used
to investigate the behaviour of self-similar sequences. For
H =06,07, 08 and 09, (Figure 2) shows the ACF of se-

quences obtained by the FGN-DW method and the theoret-
ical ACFs from Equation (5). As the H value increased,
the ACF curves decayed hyperbolically and LRD was
observed. For H = 0.6, 0.7, 0.8 and 0.9, relative inaccuracy
AACF estimated from the ACF was -0.0208%, -0.0061%,
-0.0076% and -0.0218%, respectively.

(Table 4) Variances of estimated 4 obtained using Whittie's
MLE for Daubechies wavelets and Haar wavelets
for H=106, 0.7, 0.8 and 0.9. Daub(#) stands for
the Daubechies wavelets with # coefficients.

Variances of Estimated H
Methods
6 7 8 9

Haar 1.3111e-05 | 1.4501e-05 | 1.7235e-05 | 2.1660e-05
Daub(2) 1.1914e-05 | 1.2353e-05 | 1.3133e-05 | 1.4408e-05
Daub(4) 1.1653e-05 | 1.2084e-05 | 1.2638¢-05 | 1.3323e-05
Daub(8) 1.1201e-05 | 1.1720e-05 | 1.2344e-05 | 1.3030e-05
Daub(16) 1.0946e-05 | 1.1519¢-05 | 1.2156e-05 | 1.2812¢-05
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(Figure 2) Autocorrelation function plots for the FGN-DW method (4 = 0.6, 0.7, 0.8 and 0.9)
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(Figure 3) Sequence plots for the FGN-DW method (4 = 0.6, 0.7, 0.8 and 0.9).

Sequence plots show stronger data correlation as the H
value increased; see (Figure 3) for the FGN-DW method.
In other words, generated sequences demonstrated evi-
dence of LRD properties.

Our results show that the generator produces approx-
imately self-similar FGN sequences, with the relative in-

accuracy, 4H, increasing with the increase of H, but al-
ways staying below 8%. Apparently there is a problem with
more detailed studies of such a generator, since different
methods of analysis of the Hurst parameter can give differ-

ent results for the bias of A in the same output sequences.
More reliable methods for assessment of self-similarity in
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pseudo-random sequences are needed.

6.4 Computational Complexity

The results of our experimental analysis of mean times
needed by the generator for generating pseudo-random
self-similar sequences of a given length are shown in
<Table 5>. The main conclusion is that the FGN-DW
method is fast. <Table 5> shows that 2 seconds were need-

ed to generate a sequence of 32,768 (2') numbers, while

generation of a sequence with 1,048,576 (2%) numbers took
51 seconds. The theoretical algorithmic complexity of
forming spectral density, and constructing normally dis-
tributed complex numbers, is O(1), while the inverse DWT
is O(n) [16, 27]. Thus, the time complexity of FGN- DW
is also O(n).

In summary, our results show that a generator of pseu-
do-random self-similar sequences based on FGN and DW
is sufficiently fast to make it applicable in practical com-
puter simulation studies, when long self-similar sequences

of numbers are needed.

(Table 5> Complexity and mean running times of the FGN-DW
generator. Running times were obtained by using
the Matlab clock command on a Pentium O (233MHz,
64 MB) ; each mean is averaged over 30 iterations

Sequence of

32,768 131,072 262,144 524,283 | 1,048,576
Numbers | Numbers | Numbers | Numbers | Numbers

Complexity

Mean running time (minute : second)

om | 0:2 | 0:7 | 0:13 | 0:25 [ o:a

7. Conclusions

In this paper we have proposed a generator of (long)
pseudo-random self-similar sequences, based on the FGN
and DW transform. It appears that this generator produces
approximately self-similar sequences, with the relative in-
accuracy of the resulted H below 8%, if 0.6 < H<0.9.
On the other hand, the analysis of mean times needed for
generating sequences of a given length shows that this
generator should be recommended for practical simulation
studies of telecommunication networks, since it is very fast

and accurate.
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Appendix A : A Program for Generating Self-Similar
Sequences

Here is a set of Matlab functions for implementing the
method, based on FGN and Daubechies wavelets, described
in this paper.
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% This function returns a self-similar sequence with n
numbers and the Hurst parameter H.
function SS = FGNDW(n, H, Scale, VanishingMoment)

% Create n frequencies, then calculate fast, approximately
power spectrum.

lambda = ((1 : n)xpi)/n;

f = FGNDWSpectrum(lambda, H) ;

% Adjust for estimating power spectrum via periodogram.
r = random(‘Exponential’, 1, 1, n) ;
fr=fxr;

% Construct corresponding complex numbers with random
phase.

re = sqrt(f_r);

im = random(‘Uniform’, 0, 2*pi, 1, n) ;

% Calculate complex spectral density and real part/imagi-
nary part form.

real_part = re.xcos(im) ;

imag_part = re.xsin(im) ;

z = real_part + imag_partxi ,

% Calculate filter values using I. Daubechies’ algorithm.
th, g, rh, rg] = daub(VanishingMoment) ;

% Calculate a sequence in time domain using inverse dis-
crete wavelet transform (IDWT).
SS = real(iwt(z, rh, rg, Scale)) ;

% Returns an approximation of the power spectrum for
Fractional Gaussian Noise at the given

% frequencies lambda and the given Hurst parameter H.

function FGNS = FGNDWSpectrum(lambda, H)

cf = (1/(2xpi))xvar(lambda)xsin(pix H).xgamma(2x H+1) ;
FGNS = cfx(abs(lambda)).”(1-2xH) ;
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