UWERZ FEDICIO ALY P8 0l7% % QoS 84 Z25F 29 757

VIEH T Heujdo] Al&8 338 ol4 1l
QoS A Z2eF w4y

0l

2

=t

o

¥ ERdAe £ gevitel $£44 A8 A4 A%y Badda 4o dAY WENa dentel Bl Aag sdel B 44
ol ¥ Z2ERS] A AY& ZlestD, 83 deuidel el Assld dRes AR v AW A Ag SFsd BPY QoS-Ae
W Z2Ege F8 549 @it 438 7HE gerivel 249 f2 YA gAY Fevite] 2EYe g et 42
Atd QoS W AHE AA Mol Hested ol nedor & $8 o5k diElME BAHA

Design Issues and QoS Negotiation Protocol Model
for Networked Multimedia Systems

Wonjun Lee'

ABSTRACT

This paper describes our experiences with the design and implementation of a networked multimedia information management system in an
object-oriented framework for distributed multimedia applications, and an integrated QuS-resource negotiation protocol which has been applied
to a video server in our networked multimedia: infrastructire. The salient features of olir framework to support efficient multimedia streaming
are axplained. Next the paper explores the challenges faced in integrating the proposed QoS negotiation poficy into the framework.

RS : HIBNZ YEBICIONNetworked Multimedia), QoS Mal, Wit REIOICION AlAM(Distributed Multimedia Systems), HICI® M

B (Video Server)

1. Introduction

The Heterogeneous Distributed Information Manage-
ment for the Infosphere (HDIMI) project has been con-
ducting research and development in information mana-
gement technology to support many operational objectives.
The objectives of the HDIMI project have their origin in
C"I for the Warrior [9]. That document stated the importance
of providing individual warriors, whatever their role, with
relevant and timely information from the global Infosphere.
More recently, DoD's Joint Vision 2010 [2] has emphasized
the key role of information superiority in achieving military

This work was supported by Korea Research Foundation Grant (KRF-
201-003-B0219).
t FAe: oidga HHegHd 2y
ERES 20029 749 319, AAEE 1 2002d 89 199

success. Information superiority leads to enhanced battle
space -awareness (understanding of the current military
situation) and speed of comimand (ability to plan and execute
operations to meet objectives and to adapt to changing
situations). In: this paper, we will' aim at developing an
integrated QoS-resource negotiation protocols which could
be applied to the video server system developed as a major
portion of the whole HDIMI system. The rest of the paper
is organized as follows : In Section 2, we describe the
background and objectives of the HDIMI project. Section 3
illustrates the technical approaches of HDIMI. In Section 4,
we present the accomplishments of the project. In the
following section, we will focus on the design objectives of
a continuous media server system and a QoS adaptation
protocol for the server. Concluding remarks and future work
description will follow in Section 6.

758 EeEXEia=EX ¢ Me-CH M6=(2002.10

(Figure 1) Warriors need relevant and timely infgrmation from
the global Infosphere

2. Design Objectives

The HDIMI focused on: system services and tools to
support continuous media (audio, video) in time-critical C'l
applications. Significant accomplishments in that project in-
cluded :

A block-based programming model and graphical tool
for dynamic construction of complete continuous media
applications.

® A multi-resource run-time scheduling component that
ensured continued execution of critical applications when
system resources are tight, while allowing others to ope-
rate with reduced quality of service [15).

® A high-performance multimedia file system.

All of these capabilities were implemented in a Solaris-
based system. This distributed environment was the starting
point for the HDIMI, We developed extensions to existing
data-flow oriented, block-based programming model to sup-
port operation flows in addition to data flow, and to handle
aperiodic flows in addition to periodic flows. These changes
were necessary to implement Active View services, and mo-
ved the range of applications well beyond the continuous
media applications. Specifically, the HDIMI objectives are to
“investigate, develop, and demonstrate technigues for mee-
ting C I system application requirements :

* A wide variety of information, including conventional
data types and continuous media, stored in a collection
of heterogeneous data sources in a distributed environ-
ment

® A means for each application to defines its "window
on the world’ and to specify policies on how closely
the window must be kept in synch with the global
Infosphere

¢ The operstion and cogxistence of QoS-sensitive C*
applications and other C*I applications
. chk and easy prototyping of C*1 applications

< within the framework of an overall layered system
architecture.” Significant requirements include :

® Support for data types that lack a time dimension,
eg. text, images, and conventional database struc-
tures.

& Ahility to define a “window on the warld”, ie. an ap-
plication-or user-specific Active View of the global
Infosphere.

® More general notions of Quality of Service for the-
se views,

® Distributed multi-resource management.

3. Technical Approach

The functional components comprising the architecture

“fall into five categories :

¥ Damoastaton Agphcations I

;

5 A 757 Bt — o
(Figure 2) HDIMI Architecture

® COTS (Commercigl Of-The Shelf) components.
® Presto components [1].

® Hevised Presto components.

& New Sonata components.

® Future work such as C'I applications.

At the outset of the HDIMI project, we proposed to de-
velop the following six major capabilities. Actual accom-
plishments are listed in the next section.

® Active view management - We will develop Active
View capabilities for the multimedia infosphere. This
component consists of a declarative view specificat-

ion model and language, and algorithms that map
the views specified in the language to a data-flow-
oriented, function-block-based program for execution.

® Block-based programming infrastructure ' Supporting
the Active View management, this component con-
sists of a block~based programming interface and
view execution mechanisms. The block-hased prog-
ramming model (and an associated program develop-
ment tool) was designed ‘and prototyped in the Mul-
timedia Database Management System project. We
will enhance this model with the capahilities of ope-
ration flow support and distributed, location-transp-
arent view definition and execution.

e Application development tools : We will ‘extend the
visual program development tool prototyped in the
Multimedia Database Management System . project
to support Active View specification in addition to
application construction. Further, we will develop a
user interface tool to facilitate construction of user
interfaces for different applications, and a program
analysis tool,

® Multimedia object management : We will develop ca-
pabilities of heterogeneous data {ype management
and content-based query for the multimedia infos-
phere.

® Distributed resource management . We will investi-
gate and develop distributed scheduling techniques
to support the Active View capability. This compo-
nent will be built on top of POSIX~-compliant com-
mercial operating systems.

® Application Demonstration © This indicates various
demonstration application software components to be
built in the system environment. We will develop a
set of software components in the context of a DoD
demonstration to illustrate the capabilities of all the
system components described above.

4. Architecture

We substantially accomplished the HDIMI -objectives, as
summarized below. Subsequent sections of this paper pro-
vide further details.

4.1 Active View Management

We defined Active View services, which involve three
major concepts : view, change notification, and history. We
have implemented the view and change notification concepts

HIERIZ FEIDCIH AL 78 0l 3 QoS 4 Z2EE 2 759

in multiple distributed demonstration applications. The ser-
vice definitions have proved remarkably robust over time.
Active View is an ohject-oriented framework for distributed
monitoring. and control applications. This is a broad class
of applications that includes, for example, military command,
control, communications and computing (C*D) and industrial
process control,

o Teaal Stutegic

(Figure 3) Fxample Distributed CAl Application

(Figure 3) shows an example distributed C* application.
In this case, the map server, aircraft tracking, and target
information are dynamic sources of information. Different
parts of the organization are interested in different subsets
of the 'aggregate information. For example, the strategic
command. is interested in target reconnaissance videos, and
various views of the targets to help plan missions. The
tactical command is interested in the status of current
missions, and their feasibility, both in terms of resources,
and timeliness. Having up-to~date information is crucial for
good decision making in either scenario. As this example
illustrates, this framework has some special needs. First,
changes in the situation being monitored must be propagated
to the end user/application with appropriate timeliness and
information quality guarantees. Second, a wide range of data
types, including continuous media like audio and video, and
others like text, images and records, must be managed.
Finally, there is the requirement to use commercial object-
oriented technologies as much as possible.

4.2 Block-Based Programming Infrastructure

It has been observed that the current programming pa-
radigm for developing multimedia software needs some im-
provement [17, 26]. HDIMI used a data-flow oriented, block~
based programming model and execution environment for
continueus media applications. The model is based on a data

760 EHMANI=EX C He-CH M5Z(2002.10)

flow programming approach to facilitate construction of
continuous multimedia applications. A multimedia applica~
tion is visualized as a directed graph, wherein the nodes
represent common generic multimedia modules and the ed-
ges depict the flow of multimedia streams: The nodes in the
graph, called blocks, represent operations that madify stre-
ams as they flow through them. The operation parameters
of a block are specified through parameter ports. The mul-
timedia streams flow through data ports. Application func-
tions are implemented as blocks and applications are “pro-
grammed” by interconnecting their functional blocks. Thus,
the model enables the plug-and-play programming paradi-
gm, making application programming easy and efficient and
supporting reuse of application software. A program is an
application programming model for describing continuous
multimedia applications based on the data flow paradigm.
It consists of a set of blocks interconnected through data
ports by media flow paths. (Figure 4) shows an example of
a video-capture-process-display program comprising video
camera, motion detection, color filter, and display blocks.
(Figure 5) shows example basic program blocks.

SATURN PHX-3 MOTION DETECTOR

Audio Source Mulimedia File System ATM Network

(Figure 5) Example Block-Based Program

Vigeo Enhancer

4.3 Application Development Tocls
HDIMI includes a Program Development Tool (PDT). Us-
ing the PDT, a user can construct a program from a library

of basic blocks, composing them by connecting output ports
to input. ports without regard to push/pull port type com-
patibility. Such a program is called a user program. Separa-
tion of the user program from its corresponding system
program makes the control flow-the push/pull semantics-
transparent to the application programmer and simplifies
black-based programming. HDIMI was unique in providing
a software methodology that integrates user-level applica-
tion development and system-level application execution
and in extending the block—oriented programming model
with rate and QoS properties to support the temporal cons-
traints. of multimedia applications. Applications developed
using PDT can be targeted to multiple execution environ-
ments. In addition to targeting applications to the Sonata
run-time system, the tools can develop applications for the
Berkeley. Continuous Media Toolkit run-time [20, 17].

4.4 Multimedia Object Management

We evaluated a number of COTS object-oriented and ob-
ject-relational database management systems to use as a
hasis for persistent object management and query. We sel-
ected Object Design Inc.'s ObjectStore server. We developed
tools to facilitate creation of Active Views of arbitrary Ob-
jectStore schemas. We extended Presto’s continuous media
file system into a Continuous Media Server (CMS) that sup-
ports concurrent retrieval of muitiple media streams by
distributed clients, CMS. is integrated with Active Views.
The Continuous Media Server is described further in sub-
section Continuous Media Server. With AFRL concurrence,
we decided not to investigate content-based query of mul-
timedia data. The combination of content-based query and
Active View technology is a powerful one for automating
intelligence data analysis. For instance, one could define a
view that lists enemy tanks in a specified geographic region,
given a set of raw images. Computing the view requires
executing image analysis algorithms. Our approach had been
to integrate existing algorithms in the Active View frame-
work, rather than to innovate in image analysis.

45 Distribited Resource Management

Presto included a component that performed admission
control and adaptive multi-resource scheduling based on ap-
plications’ Quality of Service (QoS) needs. We replaced Pre-
sta's custom-built distributed execution environment with
one based on CORBA. Specifically, we use Iona’s Orbix pro-
duct. ‘While this involved replacing major portions of the
Sonata. code, we believe it provided the best chance of

transferring the technology to DARPA programs, such as
JFACC, that are based on the JTF architecture; We devel-
oped a library of reusable view functions that are huilding
blocks for new- applications.

4.6 Continuous Media Server

In our Active View System, video processing is handled
by a Continuous media (CM) server which has been proto-
typed. CM servers have recently been a hot research topic
for several reasons. First of all, network speed is increasing,
thus, in the near future, services like Video on Demand, Tel~
econferencing, Distance Learning, etc. are very likely to be
popular in everyday life. Given the limitations of current
network bandwidth, however, straightforward TCP imple-
mentations are not suitable for such bandwidth- sensitive
applications. TCP has its own flow control mechanisms, er-
ror detection and retransmissions, all of which add extra time
as well as network bandwidth overhead to the transmission.
This causes unexpected and unpredictable delay and jitter
time when transferring CM data, while timing is one of the
most critical requirements of CM applications. Most CM
applications do not need highly reliable transmission. Losing
some frames is less important than having too much delay
jitter or losing synchrony between streams, Obviously, TCP
is not a good candidate for high bandwidth media streaming.
Given that observation, the natural questions are : Is UDP
suitable for CM applications? How good/bad is it? What are
the criteria (QoS) for evaluating it? If it is bad, how do we
reduce the lossy property of UDP while still making use of
its higher capability of bandwidth for applications that are
speed-sensitive like CM servers?, etc.

Secondly, the loss of UDP packets sent over a network
is usually caused by buffer overflow. Experiments show that
if a sender keeps pushing UDP packets onto the network,
even if network bandwidth is good enough to handle it, there
still are some lost packets because the consuming time of
the receiver is quite large This applies perfectly to client/
server kind of application. For example, with video stream-
ing, the consuming time of a client depends largely on the
capability of video cards, which are not always good. This
is even worse for audio streams, an 8 kHz audio stream (e.g.
telephone voice) can be played only at 64 Kbps. This delay
could cause lots of dropped UDP packets if there is nothing
done at the client and/or the server. Moreover, buffer over-
flow can occur at any of the network switches as well. How
do we detect and deal with the fact that the client is good
enough to handle data but network congestion limits the

HIE2E HEIOIC|O A48 T8 Ol 3 QoS &Y Z2E8 TY 761

stream reliability. Next, the fact that human ears are a lot
more sensitive to interrupts in voice than human eyes to in-
terrupts in video frames, raises up another natural question :

how do we deal with loss of UDP packets in loss-sensitive
stream like audio? Moreover, given limited resources like
network bandwidth, I/0 time (disk seek, latency time), me-
mory capacity, and CPU time, the capability of a CM server
shall obviously be reduced as the number of streams (clients)
increased. A best effort strategy is simple, but a preferred
policy is-to deny a request if the CM server knows that it
is not able to:-handle the request. An appropriate admission
control algorithr must be adopted for this purpose. Even
if all the above problems have been solved, inter-stream and
intra-stream synchronization are questions next to be ans-
wered. Lastly, we ported our socket-based CM server with
CORBA. We used Orbix from IONA Technologies for the
CORBA implementation. CORBA-version CM server repla-
ces all C socket calls with stubs and skeletons generated
from a pair of CORBA interface definition language (IDL)
specifications. Due to the higher fixed overhead of CORBA
such ag demultiplexing and memory management, this vers-
ion shows much lower performance. In the following subsec-
tion, we will present a design and implementation of a pro-
totyped QoS-driven CM server.

Our CM server system is a typical client/server applica-
tion. It includes one CM server and multiple CM clients. The
CM server has four major components. The Network Mana~
ger responds to clients’ connection requests. The QoS Ma-
nager is responsible for admission control and I/O schedul-
ing. Each Proxy Server communicates with a client, recei-
ving CM stream operation requests and sending CM data
by network. Each 1/0 Manager reads out CM data from disks
for a proxy server. The CM client is relatively simple com-
pared with the CM server. The CM client requests stream-
operations (such as open, play, pause, and close) to the CM
server, and receives data from the server-in some rate
(given by client)~as well as displays the retrieved stream
on the screen. It has two main modules : Client N/W Con-
trolter and CM Player. The client N/W Controller communi-
cates with CM server. It is responsible for forming requests
for starting CM streams, changing playback rate and other
QoS parameters, and stopping the connection. Once the CM
stream is started, this module keeps receiving data and puts
them into common buffers. The client CM player periodically
gets a logical data unit from the common buffers and plays
it on the relevant display device. Our CM server has several
versions to-support various Internet protocols and environ-
ments such as TCP, UDP, and CORBA.

762 BeMEEEERAC Ho-CH MEZ2002.10)

4.7 Using Commercial Oft-the Shelf (COTS) Products

For many reasons, including development: cost and stan-
dards in the application domain, we decided to ‘use commer-
cial off-the-shelf products for distributed object services and
persistent object management. Choosing the best products
for our particular needs was quite important. The COTS pro-
ducts that we picked were Iona's Orbix and Object Design’s
ObjectStore. The application domain standards mandated the
use of CORBA [15]. We chose Orhix in view of its dominant
presence in the Unix environment. The selection of an object
database was much more difficultsince there are a plethora
of products, but no standard. We chose ObjectStore, hased
on a survey of OODBMSs [18]. The choice of these products
strongly affected the design and implementation of our sys-
tem,

4,7.1 Object Systems Interoperability

We were faced with the problem of handling three diffe-
rent object systems, ie., the one that comes with the prog-
ramming language (C++), the distributed object management
system (CORBA/ Orbix), and the object database system
(OhjectStore). There is enough difference in the three appro-
aches and their abilities that we had to consider interopera-
bility issues. For example, CORBA and ObjectStore have di-
fferent object granularities-we could model an ObjectStore
collection as a CORBA object, but the individual objects that
comprise such a collection couldn’t be easily fit into the
CORBA model. The CORBA model defines an object by its
interface, while the ObjectStore model is tied {0 the imple-
mentation of an object. This tension both helped and hampe-
red us. It helped us in that the two systems affected different
parts of the design, and changes made for one did not affect
the other too much. It hampered us by increasing the number
of variables to deal with in the overall design and implemen-
tation.

4.7.2 Distribution

A related issue was that CORBA and ObjectStore have
different models of distribution. This strongly affected our
model of distribution. CORBA was mainly useful in making
our framework support distributed applications. We disco-
vered that, since our framewaork imposed certain requiremen-
ts on the style of code written, making it distributed was
relatively easy. The transition to using CORBA was reaso-
nably painless, once we understood the conceptual differen-
ces in the object models. The ObjectStore model of distribu-
tion affected the details of the data transfer among commu-
nicating distributed objects.

4.7:3 Database Design

OhjectStore’s implementation exposed reference semanti-
cs, which are not naturally modeled by conventional databa-
se views. We thus had to make some basic changes to our
model to accommodate this.

4.8 Other Issues
Some of the other issues that we considered in designing
our framework are :

4.8,1 Choice of an Object-Oriented Language

The choices were C++ and Java. C++ has more mature
off-the-shelf products, but Java claims to be the language
of choice for distributed objects. We felt that C++ should
be the language used, since most of the COTS products for
Java weren't mature enough at the time. We used C++ tem-
plates extensively to enforce interfaces, without being too
dependent on a class hierarchy to provide it. This was of
great help when we had to modify our class hierarchy to
accommodate Orbix and ObjectStore. Also, the concept of
template traits helped us hide the differences in accessing
persistent and non-persistent objects, and differences in ac~
cessiné local and remote objects.

4.8.2 Real-Time and QoS

We envisioned the application being used interactively, with
the presentation of multiple related data-types at the same
time. For example, one window would show a map, another
would show a video of the same location, and another would
list the resources in that area. In enforcing real-time and
Qo$ requirements [28], we were strongly limited, since we
had rio good model of the behavior of the COTS products
that we used. Due to this, we have not yet addressed these
issues in our implementation.

5, QoS Negotiation Protocols

Much of the work in networked continuous media server
systems [14, 20] has focused on either conservative approa-
ches based on bandwidth peaks or statistical methods that
model arrival rates and stream bandwidths with probability
distributions and determine a satisfactory level of perfor-
mance by the disk and network subsystems as a system.
However, these schemes lack in their theoretical basis to
maximize system utility, and they consider a single QoS di-
mension:for adaptation, degradation, negotiation, and rene—
gotiation. We here propose a novel QoS negotiation protocol
which is a mixture of greedy and non-greedy strategy. Gre-

edy approach is the most naive approach to admission con-
trol and resource adaptation where applications are admitted
as long as there are available resources, On application arri-
val, the policy admits the application if the resources avai-
lable is greater than the resources requested. On application
departure, the policy just adds the released resources from
the application to the resources available. A purely predictive
strategy is the other extreme of the greedy strategy where
one continuously trades off the expected benefit in the future
with the benefit from the current application. Non-greedy
strategy is more hard to implement because it is not so easy
to make an advanced estimate for the future traffic, A desi-
rable compromise is to have a mixture of these two strate-
gies. Our key idea is to assign a portion of the resources
as the reserves and when the applications start to dip into
the reserves, the non-greedy strategy is invoked. As a resu-
It, we will ensure that most of the time the admission control
is simple using the greedy strategy, but when there is a re-
source crunch some resources are Kept aside for the future
important applications.

We specify the resource reserves as threshold on the
resource utilization. A resource is congested if the resource
is opening in its reserve, The admission control protocol is
invoked when an application arrives and requests for resou-
rees. In case a new application arrives with a certain request
for a resource and the resource is not cdngested, we apply
the same policy of greedy strategy. When the resource is
congested, the admission control protocol changes to a more
conservative policy where smaller and smaller amount of the
resources are allocated to the applications. The application
agents compute how best to use the resources for maximi-
zing the application utility after the admission control proce-
ss allocates a certain amount of resources to the application.
The application agents tradeoff between the different QoS
dimensions of the application and compute the Qob assign-
ment for the application. The QoS negotiation and admission
control protocol holds the key to how the current application
utility is traded off with the future benefit that the resource
can generate for potentially more important applications.
There could be several diverse heuristic that we should stu~
dy in further detail. When applications depart. the application
agents return the resources back to the resource pool. These
resources are reclaimed by the system and re-distributed
to the applications that were admitted with degraded quality.
Though there could be various strategies for the redistribu-
tion, i.e., resource negotiation, we would propose a strategy
which is based on economic Pareto optimality [12] such that

HIERE SO0 ML P8 Ol & QoS 8 Z288 28 763

the total utility to the applications is optimized. Keeping a
partion of the resources in the reserves while there are ap-
plications that can use it is inefficient in terms of resource
utilization. To improve this performance, we add an addi-
tional mechanism that reduces the amount of resources in
the reserves if there the resource remains under utilized for
4 long time period.

To summarize, we show the theoretical background of the
integrated QoS and resource negotiation/renegotiation pro-
tocols below. Given a QoS vector g;, for an application J
with the dimension of QoS parameters being [, the object
function, R, for resource allocation is given as :

Ri(Z_;), -&j = (g5 q), j€lln]

If we assume Rtotal as the total available resources given,
the following equationis denote the resource constraints and
demand for the application j. Here, x denotes the amount of
resource(s) assigned to application j.

§ R(7)= ;} Rillqyj. . asP)= }; %= R

Henceforth, the resource reclamation protocol with regard
to Qo3 among the competing multimedia applications would
be modeled using the following two utility functions, which
could be solved by constrained non-linear optimization pro-
blem thearies such that the total utility should be maximized
under the constraints given. The former equation can be ap-
plied in case of single resourcé environments and the latter
one for multiple resource environments. Here, o; denotes a

relative priority of application J.
Bt = 2:1 a;x B;(x;)

H n
Bml = 2_,,; a',‘XB,'(Zl & ;i ij)
i= i=

6. Conclusions & Future Work

The HDIMI has focussed primarily on developing broa-
dly-apphicable information management technology as op-
posed to C'1 applications. The technology is sufficiently ma-
ture that it should be used and evaluated in the context of
application-oriented programs such as DARPA’s JFACC,
Dynamic Database, and Adaptive Information Control Envi-
ropment (AICE) programs. We will continue to pursue this
course of action and solicit AFRL assistance. A second path
that can be pursued simultaneously is to extend the capabi-

764 BEMEIEE=FEXC M-CH H5E(200210)

lities of the existing QoS provisioning technolegy in contin—
uous media server systems. Aslo, to verify the practical per-
formance of the proposed scheme, we should beable to con-
duct wide simulation studies by taking a video distribution
application or a mobile resource reservation protocol into ac-
count, in terms of diverse QoS metrics guantitatively mea-
sured,

References

[1] Agrawal, M., Kenchammana-Hosekote, D. R., Pavan, A.,
Bhattacharya, S., and Vaidyanathan, N. High Performance
Network Services for Multimedia-Integrated Distributed
Control. Technical report, Honeywell Technology Center,
Minneapolis, MN, July, 1996.

[2} Chairman of the Joint Chiefs of Staff, Joint Vision 2010,
2001. http://www.dtic.mil/doctrine/jv2010/.

[3] Zhigang Chen, See-moong Tan, Roy H, Campbell, and Yo-
ngcheng Li, Real Time Video and Audio in the WWW.

[4] Fayad, M., and Schmidt, D. Object-Orientedt Application
Frameworks, Communications of the ACM, Vol40, No.10,
pp.32-38, October, 1997.

{5] Gosling, J., Yellin, F,, and the Java Team. The Java Pro-
gramming Language, Addison-Wesley, 1996.

[6] Haeberti, P.E. ConMan : A Visual Programming Language
for Interactive Graphics, Computer Graphies, August, 1988

[7] Huang,]., Jha, R.,, Heimerdinger, W., Muhammad, M, Lau~-
zac, S., Kannikeswaran, B., Schwan, K., Zhao W., and Bet-
tati, R. RT-ARM : A real-time adaptive resource manage-
ment system for distributed mission—critical applications.
Workshop on Middleware for Distributed Real-Time Sys-
tems, San Francisco, RTSS-97.

(8] Ingalls, D., et al. Fabrik : A Visual Programming Environ-
ment, Object-Oriented Programming : Systems, Langua-
ges, and Applications, Special Issue of ACM SIGPLAN
Notices, Vol.23, No.11, November, 1988.

[9] C4 Architecture & Integration Division (J8D), J6, The Joint
Staff, C*I for the Warrior, June, 1993.

[10] Kass, M. CONDOR : Constraint-Based Dataflow, Compu-
ter Graphics, July, 1992.

[11] Wijesekera, D, and Srivastava, J. Quality of Service (QoS)
Metrics for Continuous Media, Multimedia Tools and App-
lcations, Vol.3, No.1, pp.127-166, September, 1996,

[12] Cheng, M., The WALRAS algorithm : A Convergent Dist-
ributed Implementation of General Equilibrium Outcomes,
Computational Economics, 12 1-24, 1998

[13] Thompson, J. and Gottlieb, Macromedia Director Devel-
opers Guide to Lingo, 1995.

[14] Shenoy, P., Goval, P, et al, Symphony ' An Integrated
Multimedia File System, In Proceedings of ACM MMCN
‘98, San Jose, CA, 1998.

{15] Object Management Group. The Common Object Request
Broker . Architecture and Specification. Revision 2.0. July,
1995,

[16] Qusterhout, J. 7ol and Tk Toolkit. Addison-Wesley, 1993,
[17) Patel, K. Introduction to the Continuous Media Toolkit
(CMT), Berkeley Multimedia Research Center, 1995.
(18} I?ézandak,i P. and Srivastava, J. Evaluating Object DBMSs
for Multimedia, IEEE Multimedia, 4, 3, July-September,

1997. '

[19] Schmidt, D., and Fayad, M. Lessons Learned ' Building Re-
usable OO Frameworks for Distributed Software, Commu-
rications of the ACM, Vol.40, No.10, October, 1997.

[20] Smith, B. C., Implementation Techniques for Continuous
Media Systems and Applications, PhD thesis, University
of California, Berkeley, Computer Science Department, 1994,

[21] Steinmetz, R. Human Perception of Jitter and Media Syn-
chronization, IEEE Journal on Selected Areas in Commu-
nication, Vol.14, No.l, pp61-72, 1996.

{221 Stewart, D. B.. Design of Dynamically Reconfigurable Real-
Time Software Using Port-Based Objects; Technical Re-
port CMU-RI-TR~93, Advanced Manipulators Laboratory,
The Robotics Institute, and Department of Electrical and
Computer Engineering, Carnegie Mellon University. July,
1993, :

[23] Stewart, D. B, R. A. Volpe, and P. K. Khosla. Design of
Dynamicolly Reconfigurable Real-Time Software using
Port-based Objects, Technical Report CMR-RI-TR-93-
11, Department of ECE, Camegie Melion University, 5000
Forbes Avenue, Pittshurgh, PA 15213, July, 1993

[24]1 David Tennenhouse, Joel Adam, David Carver, Henry Ho-
uth, Michael Ismert, Christopher Lindblad, William Stasior,
David Wetherall, David Bacher, and Theresa Chang. The
ViewStation @ A Softwaré—lntgnsive Approach to Media
Processing and Distribution, Muitimedia Systems, Vol.3,
pp.104-115, 1995,

[25} Teknowledge Federal Systems, Joint Task Force Archi-
tecture Specification, 1994,

o # &

¢~mail © wlee@kores.ac.kr

1980¢ Mgty Faie HFE T
EFQEAD

19909 MUty Faae AFe T8
£9(HAb

19983 Stanford Research Institute(SRD),
Student Research Associate

19994 University of Minnesota(Ph.D. in Computer Science
& Engineering)

20024 ¥4 ndER AREANG AHeY 2ue

WAk ol% B4, dEmir|o} Alag 9 eI, B4

A2

