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Modified Kernel PCA Applied To Classification Problem

Byung Joo Kim'- Joo Yong Sim'™ - Chang Ha Hwang' - 1l Kon Kim''"

ABSTRACT

An incremental kernel principal component analysis (IKPCA) is proposed for the nonlinear feature extraction from the data. The problem of
batch kernel principal component analysis (KPCA) is that the computation becomes prohibitive when the data set is large. Another problem is
that, in order to update the eigenvectors with another data, the whole eigenspace should be recomputed. IKPCA overcomes these problems by
incrementally computing eigenspace model and empirical kernel map. The IKPCA is more efficient in memory requirement than a batch KPCA
and can be easily improved by re-learning the data. In our experiments we show that IKPCA is comparable in performance to a batch KPCA
for the feature extraction and classification problem on nonlinear data set.
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1. Introduction data. Although the eigenspace is computed incrementally,

their methods have several limitations, namely they do not

Principal Component Analysis (PCA) [1] has proven to be
an exceedingly popular technique for dimensionality reduc-
tion and it applied many areas such as data compression,
image analysis, pattern recognition, regression and time se-
ries prediction. PCA traditionally require a batch computa-
tion step. The drawback of batch PCA method is that when
the data set is large, i.e., the PCA computation becomes pro
hibitive. Another problem is that, in order to update the sub-
space of eigenvectors with another data, we have to recom-
pute the whole eigenspace.

To overcome these problems, several methods have been
introduced that allow for incremental computation of eigen-
space [2, 3]. These methods take the training data sequen-
tially and compute the new set of eigenspace based on the
previous space of eigenvectors and the new input training
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consider shift of origin. Hall et al. [4] proposed a incremen

tally computing eigenspace models that allows shift of origin.
They show that fixed mean methods are not proper for clas-
sification. Another drawback of PCA is that it only defines
a linear projection of the data, the scope of its application
is somewhat limited. An approach for nonlinear principal
component analysis has been taken by Tipping and Bishop
[5]. Various global nonlinear approaches have also been de-
veloped such as auto-associative multi-laver perceptrons
minimizing the reconstruction error and principal curves [6,
7]. The disadvantage of earlier research is that they require
nonlinear optimization techniques. Recently, the kernel trick
has also been applied to PCA in terms of the dot product
matrix instead of the covariance matrix [8]. This makes it
possible to extract non-linear features using kernel functions
by solving an eigenvalue problem like PCA. Though KPCA
is capable of extracting nonlinear features, KPCA has to
store the entire N x N kernel matrix. It is infeasible for a
large number of data N. Recently there are several approach
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to make kernel PCA more efficient for large data sets. Rosi-
pal and Girolami [9] take advantage of the simplicity and
efficiency of the Expectation Maximization (EM) algorithm
for PCA to make KPCA more computationally efficient. How-
ever, this algorithm is still a batch method and does not
resolve the problem of having to store the entire kernel ma-
trix. Reduced set selection methods proposed by Scholkopf
et al. [10] are one way to obtain smaller expansion but they
are computationally quite expansive. Smola et al. [11] pro-
pose a sparse kernel feature analysis which leads to very
sparse expansions require only 4 kernel functions to be
computed for extracting the first & features. But the basic
algorithm still needs to store the kernel matrix. Another pro-
blem of KPCA is to choose a suitable kernel function for
a particular problem [12]. For this problem, Scholkopf et al.
[10] propose an empirical kernel map which is more genera
kernel.

In this paper, we propose a incremental approach of mak-

ing PCA nonlinear using empirical kernel map &y : R —

R" and incrementally eigenspace update method proposed
by Hall et al. [4], describing how an IKPCA alleviates the
need for storing the kernel matrix and makes KPCA more
tractable on large data sets. The empirical kernel map is
briefly described in Section 2. The incremental PCA outlined
in Section 3. The IKPCA which involves an adaption of the
standard formulation of KPCA is described in Section 4. In
Section 5 we present the results of the experiments which
show the feasibility of our approach. We give the conclusion
and the remark in Section 6.

2. Empirical Kernel Map

The standard formulation of PCA is as the eigende-
composition of the covariance matrix of the data. Scholkopf
[R] shows that PCA can also be carried out on the dot product
matrix.

Let {x y} be a data set with N examples of dimension &
which is mapped into feature space {@(x y)}. We suppose

N
the mapped data to be centered Z__.‘] ®(x ;) = 0, The matrix

X=[0(x),®(x3), -, @(xy)] represent the data in a com-
pact way. Standard PCA is based on finding the eigenvalues
and orthonormal eigenvectors of the covariance matrix in
the feature space.

N

> oxxT (1)

1
€= N =1

We are interested in the dot product matrix of size N x N

= —xT 9
K NXX (2)

which is called the kernel matrix since K ; = Tif O(x;)-
1
O(x;) = Tv—le(x,,x,-).

KPCA is hased on the fact that there is a one-to—one cor-
respondence between the non-zero eigenvectors {v*} of C
and the non-zero eigenvectors {«*} of Kand that they have
the same eigenvalues A1, Ag, ==, 4, (p < min(d, N)).

vE= Xu*/V AN (3)
w*=XTv*\N AN (4)

where the scaling by VA,N normalizes the eigenvectors.
Thus, the principal eigenvectors of the covariance matrix of
the mapped data lie in the span of the @ -images of the tra-
ining data.

A direct consequence of this one-to-one correspondence
is that one can perform KPCA feature extraction entirely
in terms of kernel functions. It requires determining the or-
thonormal eigenvectors «* of K and its eigenvalues A, and
projecting a point @(x) onto the principal eigenvectors o*
in feature space as defined by equation (3).

N N

0 ot =| B ul(06) - 0 )| =[ F ulktxx0] ©

In KPCA the data set {@(x y)} is high dimensional and
can most of the time not even be calculated explicitly. A
way around this problem is the idea of an empirical kernel
map ¥y : R — R" [10]

Talx) = [@x,) @), -, O(xy) O] T ©
= [kl 0, klxy, 0] 7

The empirical map does not map the data into feature
space but into a space of size N. This is motivated by the
fact that in equation (3) the eigenvectors lie in the span of
the mapped data. The empirical kernel map projects each
data point onto the subspace spanned by the {@(x )} and
enables to do all calculations in the relevant subspace of F,
which we will refer to as the feature space. Since the ¥y
(x ») do not form an orthonormal basis in R" the dot pro-

duct in this space is not the ordinary dot product x-y =
N
> x;v; But in the case of KPCA we ignore this. The idea
i=1

is that we have to perform linear PCA on the @ y(x ) from

the empirical kernel map and thus diagonalize its covariance




matrix. Let the NxN matrix ¥ = [ y(x,), Ty(x,), -,
¥ (x » )], then from equation (6) and definition of the kernel
matrix ¥ = NK. This means that the covariance matrix of
the empirical mapped data is

cq,=—$ww7= NKK "= NK*? (7)

So we actually diagonalize NK®instead of K as in KPCA.
Mikal13] shows that the two matrices have the same ei-
genvectors {u,). The eigenvalues {A,} of K are related to

the eigenvalues {%,} of NK® by

k
Ae=1 N* (8)

and as before one can normalize the eigenvectors {v,} for

the covariance matrix C of the data by dividing each «* by
VAN . Instead of actually diagonalize the covariance matrix
C y, the incremental KPCA is applied directly on the mapped
data ¥ =NK. It is now relatively easy to adapt the algo-
rithm for KPCA such that it correctly takes into account the
centering of the mapped data in an incremental way. This
means that we only need to apply the empirical map to one
data point at a time and do not need to store the N » N kernel

matrix.
3. Incremental PCA

In this section we briefly outline the method that allows
for complete incremental learning using the eigenspace ap-
proach. That method uses incremental PCA algorithm and
to project every input data immediately onto the subspace.
Each input data is then discarded, and its representation con—
sists only of the corresponding principal components stored.

Let {x,} be a data set with N examples of dimension &
We compute the eigensystem by solving the singular value
decomposition (SVD) of the covariance matrix € composed

as
1 2 — —
C=— 2 (x,— x)(x,— x) (9)
i=1
- 1 & . .
where x = N Zl x; 1s the mean input vector.
The eigenvectors u;, i = 1+ N corresponding to non-zero

eigenvectors of the covariance matrix span a subspace of
maximum  dimensions. We can then choose a subset of
only keigenvectors corresponding to the largest eigenvalues
to be included in the model. To explain incremental PCA,
we assume we have already built a set of eigenvectors U =
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[#,], ;= 1k after having used the input data x,, i =1
---N. The corresponding eigenvalues are A = diag (A) and x
is the mean input vector. Incremental building requires to
update these eigenspace to take into account a new input
data x x. 1.

Here we briefly summarize the method described in [4).
First, we update the mean

X

= N+1 (Nx+x7e\:+l) (10)

We then update the set of eigenvectors by adding a new
vector and applying a rotational transformation. In order to
do this, we first compute the orthogonal residual vector #
= (Uays++ x)—xye, and normalize it to obtain & y., =

L

b,

new matrix of eigenvectors U is computed by

for [hy.y1,>0 and ky,;=0 otherwise. The

U=1[U hy-,1R (11)

Ck+ 1) = (k+1)

where R R is a rotation matrix, R is the

solution of the eigenproblem of the following form

DR= RA (12)

- (k+1) = (k+1)
We compose D € R as

N A0 N
N+1 (07 ¢ (N+1)*

aa’ ya ] (13)
va’ ¥t

where y=h i (xyi1— x)and a= U (xy-,— x). There
are other ways to construct matrix D [3, 14]. However, only
the method described in [4] allows for the updating of mean.

4, Incremental Kernel Principal Component Analysis
(IKPCA)

Although incremental PCA huilds the subspace of eigen-
vectors incrementally, it is limited to linear data. For the case
of nonlinear data set, applying feature mapping function me-
thod to incremental PCA may be the solution. This is perfor-
med by so-called kernel-trick, which is an implicit mapping
to an infinite dimensional space.

K(x,W=0(x) - ?(») (14)

Where K is a given kernel function in input space. When
K is semi positive definite, the existence of @is proven [15].
But, most of the case the mapping @ cannot be obtained
explicitly, so the vector in the feature space is not observahle
and only the inner product between vectors can be observed
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via kernel function. So in this paper we take empirical kernel
map described in Section 2. Tsuda [16] shows that support
vector machine with empirical kernel map is identical with
the conventional kernel map.

IKPCA Algorithm

Require : X = (x,x,-x,) :matrix of training example
A *initial eigenvalue
U - initial eigenvector
“x :initial mean

for k = 1 to n : re-learning iteration
1

x = (nx+x,,,) :update the mean

n+1
hpiy=(Ua,. + x)=x,., :compute orthogonal
residual vector
T hml
by =7 f kil
+1 |h,”1\._, or | ||_ >0 )
h 4oy = 0 otherwise : normalize % .,
— L A0 n aa’ ya
n+l o7 p (n+1°* val y°
where r=71}'.,(x,..,77), a=UT(x,.;— x)

. construct matrix D

DR = RA : solve eigenproblem
U =[U"h ,..]R :update cigenvector using the
cirterian rule

end for : end of re-learning iteration

5. Experiment

First we shall take a look at simple toy data which will
show the validation of IKPCA. It is done by comparing the
eigenvector of IKPCA with batch KPCA. Next we will eva—
luate the usefulness of the nonlinear feature extraction by
IKPCA, as a preprocessing step for classification. For this
purpose, extracted features by IKPCA will be used for train-
ing simple linear classifier. Among many linear classifier,
we take linear least squares support vector machine (LS~
VM) proposed by Suyken [17]. The reason why we use LS-
VM in this paper is that LS-SVM method is computationally
attractive and easier to extend than standard support vector
machine (SVM). In order to evaluate the IKPCA feature ex-
traction capability, experiments were carried out two class
and multiclass data classification problem.

5.1 IKPCA versus Batch KPCA
To evaluate the performance of IKPCA and batch KPCA
we take nonlinear data used by Scholkoff [8]. Training data

set is generated by
y=x240.2 : e~N(@O,1),x=[—1,1] (15)

In (Figure 1) upper part is batch KPCA and lower is 1K

CA. From left to right the first 3 eigenvalues are shown in
decreasing order. Contour lines indicate constant principal
component value. We can see that there is a close similarity
between batch KPCA and IKPCA in contour graph and
eigenvalues,

(Figure 1) Two-dimensional toy examples, with data was
generated in equation (15) Upper part is batch
KPCA and lower is IKPCA

Another factors of performance evaluation are reconstruc-
tion error and eigenvector's cosine value similarity between
IKPCA and batch way KPCA. Reconstruction error is de-
fined as the squared distance between the ¥ image of x

and its reconstruction when projected onto the first / prin-
cipal components.

0= |W(xy) - P, ¥(xy)|* (16)

(Figure 2) shows the reconstruction error by re-learning
in IKPCA. SSE (Sum of Square Error) and MSE (Mean Sq-
uare Error) value of reconstruction error is 0.36975 and 0.0090.
This means the performance of IKPCA is similar to batch
KPCA.
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(Figure 2) Reconstruction error change by re-learning in IKPCA




Finally, to check the similarity of eigenvectors of both me-
thods we compute the cosine values between each eigen
vector of KPCA and the corresponding of IKPCA. B and 1
are the matrices of eigenvectors of batch KPCA and IKPCA,
respectively.

0.53856 —0.095116  0.816(4
g=|0.094315 0.49981  —0.19613
0.82981 —0.11002 —0.5259
0.11171  0.85384 0.13795

0.53856 —0.095114  0.8166
7= |0.094314 0.49981  —0.19364
0.82981 —0.11002 —0.52635
0.11171  0.85384 0.13649

<Table 1> shows the cos @ and @ values which explain
the similarity of eigenvectors of both methods.

{Table 1> Eigenvector's cos # and & value obtained by IKPCA
and batch KPCA

Eigenvector | cos @ | 7
1 1 0
2 1 0
3 1 | 0

The results of simple toy problem indicate that the pro
posed method is comparable to the batch way KPCA.

5.2 Two Class Classification
In two class classification problem, we use two data set
i.e., classical benchmarking data and real world data.

5.2.1 Two-Spiral Data

Two-spiral classification problem is known to be hard for
multilaver perceptrons [17]. Here we test a spiral problem
for which two classes have been defined and each class has
60 training data points. A RBF kernel has been taken with
o% = 0.1. Correct classification ratio of linear LS-SVM is
100%. For this particular data experiment, we can see that
IKPCA extracts nonlinear features well.

5.2.2 Real World Data

To test the performance of IKPCA for real world data,
we use Cleveland heart disease data obtained from the UCI
Machine Learning Repository. Data set has 303 patterns and
each pattern has 13 attributes. The two classes are highly
overlapped. Goal is to distinguish between presence and ab-
sence of heart disease in a patient. Like two-spiral data clas—
sification problem, same procedure is applied. A RBF kernel
has been taken with ¢ = 0.1. Correct classification ratio of
linear LS-SVM is 100%. For this particular data experiment,
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we can see that IKPCA extracts nonlinear features well on
real world data.

5.3 Multi Class Data

Earlier experiments was carried to classify two class pro
blem. Here we extend experiment to multiclass classification
problem. Training data is wine data obtained from the UCI
Machine Learning Repository. Wine data are the results of
a chemical analysis of wines grown in the same region in
Italy but derived from three different cultivates. The analysis
determined the quantities of 13 constituents found in each
of the three types of wines. Detailed attributes are available
from web site (http://www.ics.uci.edu/ mlearn/MLSumma
ry.html). Number of instances per class is 59 for class 1,
71 for class 2, and 48 for class 3. In this case we use classifier
as multiclass LS-SVM proposed by Suyken [18]. The three
classes have been encoded by taking m = 2. A RBF kernel
has been taken with 6% = ¢2 = 0.1 and » = 1. Correct clas

sification ratio of linear multiclass LS-SVM is 100%.

6. Conclusion and Remarks

This paper was devoted to the exposition of a new tech-
nique on extracting nonlinear features from incremental data.
To develop this technique, we made use of empirical kernel
mapping with incremental learning by eigenspace approach.
Proposed IKPCA has following advantages.

Firstly, IKPCA has similar feature extracting performance
for incremental and nonlinear data comparable to batch
KPCA. Secondly, IKPCA is more efficient in memory requi-
rement than batch KPCA. In batch KPCA the N x N kernel
matrix has to be stored, while for IKPCA requirements are
O((k+1)*). Here k(1 <k=N) is the number of eigenvec-
tors stored in each eigenspace updating step, which usually
takes a number much smaller than N, Thirdly, IKPCA al
lows for complete incremental learning using the eigenspace
approach, whereas batch KPCA recomputes whole decom-
position for update the subspace of eigenvectors with ano-
ther data. Fourthly, IKPCA can easily be improved by re-
learning the data. Fifthly IKPCA do not require nonlinear
optimization techniques. Lastly, experimental results show
that extracted features from IKPCA lead to good perfor-
mance when used as pre-preprocess data for a linear clas-
sifier.

Future works is combining IKPCA with other classifier,
for example neural network or kernel based learning method

so as to compare and improve classification performance.
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