구간값 퍼지집합 추론의 퍼지 Pr / T 네트 표현

조 상 엽 ${ }^{+}$

요 약

Abstract

본 논문에서는 구간값 펴지집합 추론의 퍼지 PT / T 네트 표현을 제안한다. 여기에서 퍼지생성규칙은 지식표현을 위해 사용하고, 펴지생성규 칙의 믿음값은 구간값 퍼지집합으로 표현한다. 제안한 구간값 퍼지집합 추론 알고리즘은 퍼지생성규칙의 전제부와 결론부에 있는 퍼지개념에 따라서 적절한 민음값평가함수를 사용하기 때문에 다른 방법보다 사람이 사용하는 직관과 추론에 더 가깝다.

Fuzzy Pr/T Net Representation of Interval-valued Fuzzy Set Reasoning

Sang Yeop Cho ${ }^{\dagger}$

Abstract

This paper proposes a fuzzy Pr / T net representation of interval-valued fuzzy set reasoning, where fuzzy production rules are used for knowledge representation, and the belief of fuzzy production rules are represented by interval-valued fuzzy sets. The presented interval-valued fuzzy reasoning algorithm is much closer to human intuition and reasoning than other methods because this algorithm uses the proper belief evaluation functions according to fuzzy concepts in fuzzy production rules.

키웨드 : 추론 알고리즘(Reasoning Algorithm), 펴지 Pr/T 네트(Fuzzy Pr/T Net), 퍼지생성규칙(Fuzzy Production Rule), 구간값 퍼지진합 (Interval-valued Fuzzy Set)

1. 서 른

Zadeh가 퍼지집합이론을 제안한 이후로 퍼지집합을 다루 기 위한 다양한 방법이 연구되었다[12]. Turksen, I. B.는 정 규형식(normal form)에 기반을 둔 결합 개념(combined concept)을 표현하기 위해 구간값(interval-valued) 퍼지집합의 정의를 제안하였다[10]. Gorzalczany, M. B.는 구간값 퍼지 집합에 기반을 둔 구간값 퍼지집합 추론방법을 제안하고 퍼 지값 퍼지집합 추론의 여러 가지 속성을 기술하였다 $[5,6]$. Chen, S , et al.에서는 구간값 퍼지집합에 기반을 둔 근사추 론 방법을 다루고 있다[2,3].

본 논문에서는 구간값 퍼지집합올 기반으로 하는 술어논리 수준의 퍼지 Pr / T 네트를 이용한 구간값 퍼지집합 추론의 표 현을 제안한다. 퍼지하지 않은 Pr / T 네트에서는 퍼지생성규치 의 믿음값의 계산이 필요가 없다[7,9]. 퍼지개념을 포함하고 있 는 퍼지 Pr / T 네트에서의 퍼지추론에서는 펴지생성규칙의 믿 음값을 계산하는 것이 필요하다[11, 16]. 본 연구에서는 퍼지생 성규칙의 믿음값을 기존의 퍼지집합이 아닌 구간값 퍼지집합 으로 표현하는 구간값 퍼지집합 추론의 퍼지 Pr / T 네트 표현 을 제안한다. 추론 알고리즘에서는 규칙의 전제부와 결론부에 있는 퍼지개념에 따라 적절한 믿음값평가 함수를 사용하기 때

[^0]문에 기존의 방법보다 사람이 하는 직관과 추론에 더 가깝다.
본 논문의 구성은 다음과 같다. 2 장에서는 구간값 퍼지집 합을 기술하고, 3 장에서는 지식표현과 퍼지추론방법에 대하 여 설명하고, 4 장에서는 펴지 Pr / T 네트를 정의한다. 그리 고 5 장에서는 퍼지추론 알고리즘을 제안하고, 예를 보여준 다. 마지막으로 6 장에서는 결론을 내린다.

2. 구간값 퍼지집합

만일 퍼지집합이 구간값 소속함수로 표현된다면 이러한 집 합율 구간값 퍼지집합이라고 부른다 $[2,3,10]$. 전체집합(universe of discourse) $U=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ 의 구간값 퍼지집합 A 는 다음과 같이 표현할 수 있다.

$$
A=\left\{\left(u_{1},\left[a_{11}, a_{12}\right]\right),\left(u_{2},\left[a_{21}, a_{22}\right]\right), \cdots,\left(u_{n},\left[a_{n 1}, a_{n 2}\right]\right)\right\}
$$

여기에서 구간 $\left[\mathrm{a}_{\mathrm{il}}, \mathrm{a}_{\mathrm{i}}\right]$ 은 구간값 퍼지집합 A 에 u_{i} 의 소속 정도가 a_{il} 과 $\mathrm{a}_{\mathrm{i} 2}$ 사이에 있다는 것을 가리킨다. $0 \leq \mathrm{a}_{\mathrm{i} 1} \leq \mathrm{a}_{\mathrm{i} 2}$ $\leq 1,1 \leq \mathrm{i} \leq \mathrm{n}$.

A 와 B 가 전체집합 U 의 구간값 퍼지집합이라고 하자. 여 기에서,

$$
\begin{aligned}
U & =\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}, \\
A & =\left\{\left(u_{1},\left[a_{11}, a_{12}\right]\right),\left(u_{2},\left[a_{21}, a_{22}\right]\right), \cdots,\left(u_{n},\left[a_{n 1}, a_{n 2}\right]\right)\right\} \\
& =\left\{\left(u_{i},\left[a_{i 1}, a_{i 2}\right]\right) \mid 1 \leq i \leq n\right\}
\end{aligned}
$$

$$
\begin{aligned}
B & =\left\{\left(u_{1},\left[b_{11}, b_{12}\right]\right),\left(u_{2},\left[b_{21}, b_{22}\right]\right), \cdots,\left(u_{n},\left[b_{n 1}, b_{n 2}\right]\right)\right\} \\
& =\left\{\left(u_{i},\left[b_{i 1}, b_{i 2}\right]\right) \mid 1 \leq i \leq n\right\}
\end{aligned}
$$

구간값 퍼지집합의 합집합, 교집합 그리고 여집합은 다옴과 같이 정의된다.

$$
\begin{aligned}
& A \cup B=\left\{\left(u_{i},\left[c_{i 1}, c_{i 2}\right]\right) \mid c_{i 1}=\operatorname{Max}\left(a_{i 1}, b_{i 1}\right),\right. \\
& \left.\mathrm{c}_{\mathrm{i} 2}=\operatorname{Max}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i} 2}\right) \text {, 그리고 } 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \\
& A \cap B=\left\{\left(u_{i},\left[d_{i l}, d_{i 2}\right]\right) \mid d_{i l}=\operatorname{Min}\left(a_{i 1}, b_{i 1}\right)\right. \text {, } \\
& \left.\mathrm{d}_{\mathrm{i} 2}=\operatorname{Min}\left(\mathrm{a}_{\mathrm{i} 2}, \mathrm{~b}_{\mathrm{i} 2}\right) \text {, 그리고 } 1 \leq \mathrm{i} \leq \mathrm{n}\right) \\
& \mathrm{A}^{\prime}=\left\{\left(\mathrm{u}_{\mathrm{i}},\left[\mathrm{x}_{\mathrm{i} 1}, \mathrm{x}_{\mathrm{i} 2}\right]\right) \mid \mathrm{x}_{\mathrm{i} 1}=1-\mathrm{a}_{\mathrm{i} 2}, \mathrm{x}_{\mathrm{i} 2}=1-\mathrm{a}_{\mathrm{i} 1} \text { 그리고 } 1 \leq \mathrm{i} \leq \mathrm{n}\right\}
\end{aligned}
$$

만일 ${ }_{\mathrm{i}} \mathrm{a}_{\mathrm{i} 1}=\mathrm{b}_{\mathrm{i} 1}$ 그리고 $\mathrm{a}_{\mathrm{i} 2}=\mathrm{b}_{\mathrm{i} 2}$ 라면 구간값 퍼지집합 A 와 B 는 동치 $(\mathrm{A}=\mathrm{B})$ 이다. $1 \leq \mathrm{i} \leq \mathrm{n}$.
Zwick, R. E.는 19 가지의 퍼지집합의 유사쳑도(similarity measure)를 살펴보고 이들의 성능을 비교하였다[13]. Chen, S. M., et al.는 유사도 함수 S 를 정의하였다 $[2,3]$.
[정의 2.1]
$\overline{\mathrm{a}}$ 와 $\overline{\mathrm{b}}$ 는 R^{n} 에 있는 두 벡터라고 하자. 여기에서 R 은 0 과 1 사이의 실수집합이다. 즉,

$$
\begin{aligned}
& \bar{a}=\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle \\
& \bar{b}=\left\langle b_{1}, b_{2}, \cdots, b_{n}\right\rangle
\end{aligned}
$$

여기에서 $\mathrm{a}_{\mathrm{i}} \in[0,1], \mathrm{b}_{\mathrm{i}} \in[0,1], 1 \leq \mathrm{i} \leq \mathrm{n}$. 그래서 벡터 $\overline{\mathrm{a}}$ 와 $\overline{\mathrm{b}}$ 사이의 유사정도는 다음과 같은 유사성함수(similarity function) S 로 측정할 수 있다.

$$
S(\bar{a}, \bar{b})=\frac{\bar{a} \cdot \bar{b}}{\operatorname{Max}(\bar{a} \cdot \bar{a}, \bar{b} \cdot \bar{b})}
$$

여기에서 $S(\bar{a}, \bar{b}) \in[0,1]$. $S(\bar{a}, \bar{b})$ 의 값은 \bar{a} 와 \bar{b} 사이의 유사정도를 가리킨다. $S(\bar{a}, \bar{b})$ 의 값이 더 크면 클수록 벡터 $\overline{\mathrm{a}}$ 와 $\overline{\mathrm{b}}$ 사이의 유사성은 더 크다.
전체집합 $\mathrm{U}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \cdots, \mathrm{u}_{n}\right\}$ 이고 A 는 U 의 구간값 퍼지 집합이라고 하자.

$$
\mathrm{A}=\left\{\left(\mathrm{u}_{\mathrm{i}},\left[\mathrm{a}_{\mathrm{i} 1}, \mathrm{a}_{\mathrm{i}}\right]\right) \mid 1 \leq \mathrm{i} \leq \mathrm{n}\right\}
$$

그래서 구간값 퍼지집합 A 의 하한과 상한은 아래첨자 백터 A 와 윗첨자 벡터 $\overline{\mathrm{A}}$ 로 각각 표현할 수 있다. 여기에서

$$
\begin{aligned}
& \underline{A}=\left\langle a_{11}, a_{21}, \cdots, a_{n 1}\right\rangle \\
& \bar{A}=\left\langle a_{12}, a_{22}, \cdots, a_{n 2}\right\rangle
\end{aligned}
$$

구간값 펴지집합 사이의 유사정도를 측정하는 매칭함수 M 은 다음과 같다. 전체집합 $\mathrm{U}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \cdots, \mathrm{u}_{\mathrm{n}}\right\}$ 이고 A 와 B 는 U 의 구간값 퍼지집합이라고 하자. 여기에서,

$$
\begin{aligned}
& A=\left\{\left(u_{i},\left[a_{i i}, a_{i 2}\right]\right) \mid 1 \leq i \leq n\right\} \\
& B=\left\{\left(u_{i},\left[b_{i 1}, b_{i 2}\right]\right) \mid 1 \leq i \leq n\right\}
\end{aligned}
$$

구간값 퍼지집합 A 와 B 의 하한과 상한은 $\mathrm{A}, \overline{\mathrm{A}}, \mathrm{B}$ 그리 고 $\overline{\mathrm{B}}$ 로 각각 표현한다.

$$
\begin{aligned}
& \underline{A}=\left\langle a_{11}, a_{21}, \cdots, a_{n 1}\right\rangle \\
& \bar{A}=\left\langle a_{12}, a_{22}, \cdots, a_{n 2}\right\rangle \\
& \underline{B}=\left\langle b_{11}, b_{21}, \cdots, b_{n 1}\right\rangle \\
& \bar{B}=\left\langle b_{12}, b_{22}, \cdots, b_{n 2}\right\rangle
\end{aligned}
$$

그래서 구간값 펴지집합 A 와 B 사이의 매칭정도 $\mathrm{M}(\mathrm{A}, \mathrm{B})$ 은 다음과 같이 측정할 수 있다.

$$
\mathrm{M}(\mathrm{~A}, \mathrm{~B})=\frac{\mathrm{S}(\underline{\mathrm{~A}}, \underline{\mathrm{~B}})+\mathrm{S}(\overline{\mathrm{~A}}, \overline{\mathrm{~B}})}{2}
$$

여기에서 $\mathrm{M}(\mathrm{A}, \mathrm{B}) \in[0,1] . \mathrm{M}(\mathrm{A}, \mathrm{B})$ 의 값이 더 크면 클수록 구간값 퍼지집합 A 와 B 의 매칭정도가 더 크다.

3. 지식표힐과 추른

퍼지생성규칙올 이용하면 실세계에서 사람이 사용하는 불확실하고 애매한 지식을 표현할 수 있다. 퍼지생성규칙은 두 개의 술어논리공식사이의 퍼지관계를 기술한다고 생각 할 수 있다. 간단한 퍼지생성규칙의 형식은 다음과 같다.

$$
\operatorname{Rule}_{\mathrm{i}}: d_{j} \Rightarrow d_{k}\left(\operatorname{Bel}=\left[\beta_{i 1}, \beta_{i 2}\right]\right)
$$

여기에서 Rule 는 규칙의 이름이고, d_{j} 와 d_{k} 는 각각 퍼지술 어 $\mathrm{d}_{\mathrm{j}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{m}}\right)$ 와 $\mathrm{d}_{\mathrm{k}}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \cdots, \mathrm{y}_{\mathrm{n}}\right)$ 를 표현한다. m 과 n 은 양의 정수이다. x_{p} 와 y_{q} 는 같을 수도 있고 다를 수도 있으 며, 변수이거나 상수이다. $1 \leq p \leq m, 1 \leq q \leq n . \beta_{i 1}, \beta_{i 2}$ 는 믿음의 강도를 표시하는 믿음값이다. $0 \leq \beta_{i 1} \leq \beta_{i 2} \leq 1 . \lambda$ 를 임계값이라고 하자. $\lambda \in[0,1] . \mathrm{d}_{\mathrm{j}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{m}}\right)$ 의 한 인스 턴스의 믿음값이 $\left[\beta_{j 1}, \beta_{j 2}\right], 0 \leq \beta_{j 1} \leq \beta_{j 2} \leq 1$ 이다. $\beta_{j 1} \geq \lambda$ 면 규칙은 실행가능하고, $\beta_{j 1}<\lambda$ 면 규칙은 실행되지 않는다.

퍼지생성규칙을 맣이 사용하는 분야로는 제어분야와 지 식공학분야가 있다. 각 분야에서 사용하는 퍼지생성규칙의 분류는 $[1,8,14,15]$ 등에서 찾아 볼 수 있다. 본 논문에서는 지식공학분야에서 사용하는 펴지생성규칙을 논리연결자의 유무에 따라 <표 1 >과 같이 9 가지의 형으로 논리적인 구 분을 하였다. 1 형은 단순 퍼지생성규칙이라고 하고, 2 형에 서 9 형은 합성 펴지생성규칙이라고 한다.

본 연구에서는 9 가지의 펴지생성규칙 중에서 1 형에서 4 형까지 만을 사용한다. 2형과 4형은 1형과 3형으로 축소할 수 있지만 퍼지생성규칙의 표현성올 위해 그대로 사용한다. 5 형과 6 형은 퍼지생성규치을 다루기 쇱게 하기 위해 1 형과 2형으로 각각 축소하여 표현한다. 7형, 8형 그리고 9형은 의미있는 연역추론올 할 수 없으므로 사용하지 않는다.

〈표 1〉퍼지생성규칙의 분류

형	퍼지생성규칙
1	$\mathrm{d}_{\mathrm{j}} \Rightarrow \mathrm{d}_{\mathrm{k}}\left[\beta_{i 1}, \beta_{i 2}\right]$
2	$\mathrm{d}_{\mathrm{j}} \Rightarrow \mathrm{d}_{\mathrm{k} 1} \wedge \mathrm{~d}_{\mathrm{k} 2} \wedge \cdots \wedge \mathrm{~d}_{\mathrm{kn}}\left[\beta_{11}, \mathrm{~B}_{\mathrm{i} 2}\right]$
3	$\mathrm{d}_{\mathrm{j} 1} \wedge \mathrm{~d}_{\mathrm{j} 2} \wedge \cdots \wedge \mathrm{~d}_{\mathrm{jm}} \Rightarrow \mathrm{d}_{\mathrm{k}}\left[\beta_{\mathrm{il}}, \beta_{\mathrm{i} 2}\right]$
4	$\mathrm{d}_{\mathrm{j} 1} \wedge \mathrm{~d}_{\mathrm{j} 2} \wedge \cdots \wedge \mathrm{~d}_{\mathrm{jm}} \Rightarrow \mathrm{d}_{\mathrm{kl} 1} \wedge \mathrm{~d}_{\mathrm{k} 2} \wedge \cdots \wedge \mathrm{~d}_{\mathrm{kn}}\left[\beta_{\mathrm{il}}, \beta_{\mathrm{i} 2}\right]$
5	$\mathrm{d}_{\mathrm{j} 1} \vee \mathrm{~d}_{\mathrm{j} 2} \vee \cdots \vee \mathrm{~d}_{\mathrm{jm}} \Rightarrow \mathrm{d}_{\mathrm{k}}\left[\beta_{\mathrm{il}}, \beta_{\mathrm{i} 2}\right]$
6	$\mathrm{d}_{\mathrm{j} 1} \vee \mathrm{~d}_{\mathrm{j} 2} \vee \cdots \vee \mathrm{~d}_{\mathrm{jm}} \Rightarrow \mathrm{d}_{\mathrm{k} 1} \wedge \mathrm{~d}_{\mathrm{k} 2} \wedge \cdots \wedge \mathrm{~d}_{\mathrm{kn}}\left[\beta_{\mathrm{il}}, \beta_{\mathrm{i} 2}\right]$
7	$\mathrm{d}_{\mathrm{j}} \Rightarrow \mathrm{d}_{\mathrm{k} 1} \vee \mathrm{~d}_{\mathrm{k} 2} \vee \cdots \vee \mathrm{~d}_{\mathrm{kn}}\left[\beta_{\mathrm{il}}, \beta_{\mathrm{i} 2}\right]$
8	$\mathrm{d}_{\mathrm{j} 1} \wedge \mathrm{~d}_{\mathrm{j} 2} \wedge \cdots \wedge \mathrm{~d}_{\mathrm{jm}} \Rightarrow \mathrm{d}_{\mathrm{kl}} \vee \mathrm{d}_{\mathrm{k} 2} \vee \cdots \vee \mathrm{~d}_{\mathrm{kn}}\left[\beta_{\mathrm{i} 1}, \beta_{\mathrm{i} 2}\right]$
9	$\mathrm{d}_{\mathrm{jl}} \vee \mathrm{d}_{\mathrm{j} 2} \vee \cdots \vee \mathrm{~d}_{\mathrm{jm}} \Rightarrow \mathrm{d}_{\mathrm{kl}} \vee \mathrm{d}_{\mathrm{k} 2} \vee \cdots \vee \mathrm{~d}_{\mathrm{kn}}\left[\beta_{\mathrm{i} 1}, \beta_{\mathrm{i} 2}\right]$

펴지생성규칙을 이용한 퍼지추론을 할 때에는 퍼지합성 추론을 사용한다．퍼지합성추론이 적용될 때 결론의 믿음값 을 계산하기 위한 함수들이 사용된다．여기에서는 퍼지합성 추론과 믿음값함수에 대하여 기술한다．
펴지합성추론 퍼지변수를 가지고 있는 퍼지생성규칙올 이용하여 추론을 하기 위해 개발된 추론규칙이 퍼지합성추 론이다．퍼지합성추론의 형식은 다음과 같다．

$$
\begin{aligned}
& \text { 《규칙》: } x \text { is } A \Rightarrow y \text { is } B\left[\beta_{\mathrm{r} 1}, \beta_{\mathrm{r} 2}\right] \\
& \text { 《사실》: } x \text { is } A^{\prime}\left[\beta_{\mathrm{fl}}, \beta_{\mathrm{f} 2}\right] \\
& \hline \text { 《결론》: } y \text { is } \mathrm{B}^{\prime}\left[\beta_{\mathrm{cl},}, \beta_{\mathrm{c} 2}\right]
\end{aligned}
$$

여기에서 $\mathrm{A}, \mathrm{A}^{\prime}, \mathrm{B}$ 그리고 B^{\prime} 는 퍼지집합이거나 비퍼지집 합이다．$\left[\beta_{\mathrm{r} 1}, \beta_{\mathrm{r} 2}\right],\left[\beta_{\mathrm{f1}}, \beta_{\mathrm{f} 2}\right]$ 그리고 $\left[\beta_{\mathrm{cl}}, \beta_{\mathrm{c} 2}\right]$ 는 각각《뀨칙》，《사실》 그리고 《결론》의 믿음값이다．［ $\left.\beta_{\mathrm{c} 1}, \beta_{\mathrm{c} 2}\right]$ 를 구하기 위해 사용하는 함수가 믿음값합수이다［1，4］．

믿음값평가함수 단순 퍼지생성규칙의 믿음값을 계산할 때 사용하는 믿음값함수 $\beta:\left(\left[\beta_{\mathrm{fl}}, \beta_{\mathrm{f} 2}\right],\left[\beta_{\mathrm{r} 1}, \beta_{\mathrm{r} 2}\right]\right) \rightarrow\left[\beta_{\mathrm{cl}}, \beta_{\mathrm{c} 2}\right]$ 이 다．규칙의 전제부가 비퍼지하면 $\beta_{\mathrm{c} 1}=\beta_{\mathrm{f} 1} \times \beta_{\mathrm{r} 1}$ 과 $\beta_{\mathrm{c} 2}=\beta_{\mathrm{f} 2}$ $\times \beta_{\mathrm{r} 2}$ 를 사용하고，전제부가 펴지하고 결론부가 비퍼지하면 $\beta_{\mathrm{c} 1}=\beta_{\mathrm{f} 1} \times \beta_{\mathrm{r} 1} \times \mathrm{M}$ 와 $\beta_{\mathrm{c} 2}=\beta_{\mathrm{f} 2} \times \beta_{\mathrm{r} 2} \times \mathrm{M}$ 를 사용한다． M 은 매 칭정도이다．전제부와 결론부가 모두 퍼지하면 $\beta_{\mathrm{c} 1}=\beta_{\mathrm{f} 1} \times$ R_{sg} 와 $\beta_{\mathrm{c} 2}=\beta_{\mathrm{f} 2} \times \mathrm{R}_{\mathrm{sg}}$ 사용한다． R_{sg} 는 인간의 추론과정올 가 장 적절허 표현하는 퍼지관계이다．

믿음값합성함수 합성 퍼지생성규칙의 믿음값을 평가하기 위해 다음과 같은 믿음값합성함수를 사용한다．

$$
\begin{aligned}
& \beta_{\mathrm{c} 1}=\beta_{\mathrm{comp}}\left(\beta\left(\beta_{\mathrm{f} 1}, \beta_{\mathrm{r} 1}\right)\right)=\min _{\mathrm{q}}\left(\max _{\mathrm{p}}\left(\beta\left(\beta_{\mathrm{flp},}, \beta_{\mathrm{rlpq}}\right)\right)\right) \\
& \beta_{\mathrm{c} 2}=\beta_{\mathrm{comp}}\left(\beta\left(\beta_{\mathrm{f} 2}, \beta_{\mathrm{r} 2}\right)\right)=\min _{\mathrm{q}}\left(\max _{\mathrm{p}}\left(\beta\left(\beta_{\mathrm{f} 2 \mathrm{p},}, \beta_{\mathrm{r} 2 \mathrm{pq}}\right)\right)\right)
\end{aligned}
$$

여기에서 $1 \leq \mathrm{p} \leq \mathrm{m}, \mathrm{l} \leq \mathrm{q} \leq \mathrm{n}$ ． m 과 n 은 가각 전제부와 결론부에 있는 퍼지술어의 수이다．

믿음값결합함수 퍼지생성규칙의 5 형과 6형의 축소된 1 형 과 2형은 서로 다른 추론 통로를 통해 같은 노드，즉 같은 결론에 도달할 수가 있다．이 때에 두 개 이상의 서로 다른 믿음값을 결론이 나타날 수 있으므로 결론의 믿음값을 다 시 계산하기 위해 사용하는 함수가 밀음값결합함수이다．

$$
\begin{aligned}
& \beta_{\mathrm{c} 1}=\beta_{\mathrm{comb}}\left(\beta_{\mathrm{cl} 1}, \beta_{\mathrm{c} 1}^{\text {old }}\right)=\max \left(\beta_{\mathrm{cl} 1}, \beta_{\mathrm{c} 1}^{\text {old }}\right) \\
& \beta_{\mathrm{c} 2}=\beta_{\mathrm{comb}}\left(\beta_{\mathrm{c} 2}, \beta_{\mathrm{c} 2}^{\text {old }}\right)=\max \left(\beta_{\mathrm{c} 2}, \beta_{\mathrm{c} 2}^{\text {old }}\right)
\end{aligned}
$$

여기에서 $\beta_{\mathrm{c} 1}{ }^{\text {old }}$ 와 $\beta_{\mathrm{c} 2}{ }^{\text {old }}$ 는 이미 추론통로를 통해 도달한 결 론의 대한 믿음값이고，β_{cl} 과 $\beta_{\mathrm{c} 2}$ 는 다른 추론통로를 퉁해서 도달한 또 다른 결론의 믿음값이다．

4．퍼지 Pr / T 네트

퍼지생성규칙을 표현하기 다음과 같은 $\mathrm{FPN}(f \mathbf{f u z z y} \mathrm{Pr} / \mathrm{T}$ net）올 정 의한다［11］．
$\mathrm{FPN}=\left(\mathrm{P}, \mathrm{T}, \mathrm{F}, \mathrm{D}, \mathrm{V}, \boldsymbol{\pi}, \mathrm{A}_{\mathrm{P}}, \mathrm{A}_{\mathrm{T}}, \mathrm{A}_{\mathrm{F}}, f, \mathrm{a}, \mathrm{M}_{0}\right)$
여기에서 P, T 와 F 는 각각 플레이스，트랜지션 그리고 흐름관계의 유한집합이다． $\mathrm{P} U \mathrm{~T} \neq 0, \mathrm{P} \cap \mathrm{T}=0, \mathrm{~F} \subseteq(\mathrm{P} \times \mathrm{T})$ $U(T \times P), \operatorname{dom}(F) U \operatorname{ran}(F)=P \cup T . D$ 는 공집합이 아닌 유 한집합인 개체（individual）집합이다． 8 는 D 의 연산자집합이 다． V 는 D 상의 변수집합이다．π 는 D 상의 술어 집합이다． $\mathrm{A}_{\mathrm{P}}: \mathrm{P} \rightarrow \pi, \mathrm{A}_{\mathrm{P}}$ 는 전단사사상이다．${ }_{\mathrm{p}} \mathrm{p} \in \mathrm{P}$ ，만일 $\mathrm{A}_{\mathrm{P}}(\mathrm{p})$ 가 n －항 술어라면 p 는 n －항 술어라고 한다． $\mathrm{A}_{\mathrm{T}}: \mathrm{T} \rightarrow \mathrm{f}_{\mathrm{D}}, \mathrm{f}_{\mathrm{D}}$ 는 D 상의 공식집합이다．${ }^{\forall} \mathrm{t} \in \mathrm{T}$ 에 대해 만일 $\mathrm{A}_{\mathrm{T}}(\mathrm{t})$ 는 유일한 술어가 되거나 Q 내의 연산자가 될 수 있다． $\mathrm{A}_{F}: \mathrm{F} \rightarrow \mathrm{fS}$ ， f_{S} 는 D 상의 기호합집합（symbolic sum set）．${ }^{\forall} \mathrm{p} \in \mathrm{P}$ ，만일 $(\mathrm{t}, \mathrm{p}) \in \mathrm{F}$ 또는 $(\mathrm{p}, \mathrm{t}) \in \mathrm{F}$ 라면 $\mathrm{A}_{\mathrm{F}}(\mathrm{t}, \mathrm{p})$ 또는 $\mathrm{A}_{\mathrm{F}}(\mathrm{p}, \mathrm{t})$ 는 n －항 기호합（symbolic sum）이거나 $\mathrm{A}_{\mathrm{F}}(\mathrm{t}, \mathrm{p})$ 또는 $\mathrm{A}_{\mathrm{F}}(\mathrm{p}, \mathrm{t})$ 는 널이 다．${ }^{\forall} t \in T$ 에 대해서 $A_{T}(t)$ 안의 자유변수（free variable）들 은 방향성아크의 양끝 중 하나가 t를 갖는 이 아크에서 단 지 한번만 발생한다．$f: \mathrm{T} \rightarrow\left[\beta_{\mathrm{i} 1}, \beta_{\mathrm{i} 2}\right]$ 는 결합함수이다．${ }_{\mathrm{t}} \mathrm{t} \in$ $\mathrm{T}, f(\mathrm{t})=\left[\beta_{i 1}, \beta_{i 2}\right]$ 이다． $0 \leq \beta_{i 1} \leq \beta_{i 2} 1 . \mathrm{a}: \mathrm{P} \rightarrow\left[\beta_{i 1}, \beta_{i 2}\right]$ 는 결합 함수이다．${ }^{\forall} p \in P, a(p)$ 는 술어 p 의 모든 인스턴스의 믿음 값을 나타낸다．p 내의 어느 토큰 toki에 대해，$a^{\prime}\left(p\left(t k_{i}\right)\right)$ $\in a(p)$ 이다．여기에서 $a^{\prime}\left(p\left(t_{0} k_{i}\right)\right)$ 는 p 의 인스턴스 tok ${ }_{i}$ 의 밀 음값을 표시한다． $\mathrm{M}_{0}: \mathrm{P} \rightarrow \mathrm{N}$ 는 마킹함수이다． N 은 음이 아닌 양의 정수이다．

트련지션의 실형 퍼지 Pr / T 네트에서 트랜지션의 실행 조 건은 다음과 같다．（1）만일 ${ }^{\forall} p \in \cdot t, M(p) \geq 1$ 이라면 트랜 지션 t 는 M 에서 실행가능하다（enable）．（2）만일 트랜지션 t 가 M 에서 실행가능하다면 t 의 실행은 M 을 새로운 마킹 M^{\prime} 으로 변환시킨다．즉， M^{\prime} 은 M 에서 도달가능하다（reachable）． ${ }^{\forall} \mathrm{p} \in \mathrm{P}$ 대해 만일 $\mathrm{p} \in \mathrm{t} \cdot$ 그리고 $\mathrm{p} \notin \cdot \mathrm{t}$ 이라면 $\mathrm{M}^{\prime}(\mathrm{p})=\mathrm{M}(\mathrm{p})$ +1 ；만일 $\mathrm{p} \in \cdot \mathrm{t}$ 그리고 $\mathrm{p} \notin \mathrm{t} \cdot$ 이라면 $\mathrm{M}^{\prime}(\mathrm{p})=\mathrm{M}(\mathrm{p})$－ 1 ；그렇지 않으면 $\mathrm{M}^{\prime}(\mathrm{p})=\mathrm{M}(\mathrm{p})$ 이다．이규칙은 퍼지 Pr / T 네트의 동적인 동작을 정의한다．• t 와 $\mathrm{t} \cdot$ 는 t 의 모든 입 력풀레이스와 출력플레이스의 집합을 각각 표시한다．

투사혱렬 FPN이 m개의 플레이스와 n 개의 트랜지션을 갖는 Pr / T 네트라고 하자． FPN 의 투사행렬（incidence ma－ trix）은 $n \times m$ 정수행렬 $\mathrm{C}_{1}=\left[\mathrm{C}_{\mathrm{ij1}}\right]$ 와 $\mathrm{C}_{2}=\left[\mathrm{c}_{\mathrm{ij} 2}\right] . \mathrm{C}_{1}=\left[\mathrm{c}_{\mathrm{ij} 1}\right]$ 에 대 해 FPN의 투사행렬은 $\mathrm{c}_{\mathrm{ij} 1}=\mathrm{w}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)-\mathrm{w}\left(\mathrm{p}_{\mathrm{j}}, \mathrm{t}_{\mathrm{i}}\right)=\left(\mathrm{A}_{\mathrm{F}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)\right) \beta$ $\mathrm{in}^{1}-\mathrm{A}_{\mathrm{F}}\left(\mathrm{p}_{3}, \mathrm{t}_{\mathrm{i}}\right) . \mathrm{C}_{2}=\left[\mathrm{c}_{\mathrm{ij} 2}\right]$ 에 대해 FPN 의 투사행렬은 $\mathrm{c}_{\mathrm{ij} 2}=\mathrm{w}(\mathrm{t}$ $\left.{ }_{i}, p_{j}\right)-w\left(p_{j}, t_{i}\right)=\left(A_{F}\left(t_{i}, p_{j}\right)\right) \beta_{i 2}-A_{F}\left(p_{j}, t_{i}\right)$ ．여기에서 t_{j} 와 p_{j} 는 각각 트련지션과 플레이스이다．${ }^{\forall} \mathrm{t} \in \mathrm{T}, f(\mathrm{t})=\left[\beta_{\mathrm{i} 1}, \beta_{\mathrm{i} 2}\right]$ 이다．
(그림 1-3)은 1 형 퍼지생성규칙에 대한 퍼지 Pr / T 네트 표현이다. $\beta_{\mathrm{k} 1}=\beta\left(\beta_{\mathrm{j} 1}, \beta_{\mathrm{ii}}\right)$ 과 $\beta_{\mathrm{k} 2}=\beta\left(\beta_{\mathrm{j} 2}, \beta_{\mathrm{i} 2}\right)$ 이다. (그림 4-6)은 2 형 퍼지생성규칙에 대한 퍼지 Pr / T 네트표현이다. p_{j} 에 있 는 토큰은 p_{k} 중 오직 한곳에만 나타난다. $\beta_{\mathrm{ks1}}=\beta_{\mathrm{comp}}\left(\beta\left(\beta_{j}, \beta\right.\right.$ $\left.i_{i}\right)=\beta\left(\beta_{\mathrm{j} 1}, \beta_{\mathrm{is1}}\right)$ 과 $\quad \beta_{\mathrm{ks} 2}=\beta_{\text {comp }}\left(\beta\left(\beta_{\mathrm{j}}, \beta_{\mathrm{j}}\right)\right)=\beta\left(\beta_{\mathrm{j} 2}, \beta_{\mathrm{is} 2}\right), \quad 1 \leq \mathrm{s} \leq \mathrm{n}$. (그림 7-9)는 3형 퍼지생성규칙에 대한 퍼지 Pr / T 네트표 현이다. $\beta_{\mathrm{k} 1}=\beta_{\mathrm{comp}}\left(\beta\left(\beta_{\mathrm{j}}, \beta_{\mathrm{i}}\right)\right)=\min \left(\max \left(\beta\left(\beta_{\mathrm{jp} 1}, \beta_{\mathrm{i} 1}\right)\right)\right)$ 과 $\beta_{\mathrm{k} 2}=\beta$ $\operatorname{comp}\left(\beta\left(\beta_{\mathrm{j}}, \beta_{\mathrm{i}}\right)\right)=\min \left(\max _{\mathrm{q}}\left(\beta\left(\beta_{\mathrm{j} 2}, \beta_{\mathrm{i} 2}\right)\right)\right) .1 \leq \mathrm{p} \leq \mathrm{n}$. (그립 $\left.10-12\right)$ 는 4 형 규칙에 대한 퍼지 Pr / T 네트표현이다. $\beta_{\mathrm{xs} 1}=\beta_{\mathrm{comp}}(\beta$ $\left.\left(\beta_{\mathrm{j}}, \beta_{\mathrm{i}}\right)\right)=\min \left(\max _{q}\left(\beta\left(\beta_{\mathrm{jp} 1}, \beta_{\mathrm{is} 1}\right)\right)\right)$ 과 $\beta_{\mathrm{ks} 2}=\beta_{\mathrm{comp}}\left(\beta\left(\beta_{\mathrm{j}}, \beta_{\mathrm{i}}\right)\right)=\min \left(\max _{\mathrm{q}}\right.$ $\left.\left(\beta\left(\beta_{\mathrm{j} 2}, \beta_{\mathrm{is} 2}\right)\right)\right) .1 \leq \mathrm{p} \leq \mathrm{n}, 1 \leq \mathrm{s} \leq \mathrm{o}$.
(그림 13)의 (a)와 (b)는 파라매터가 있거나 없는 술어 d_{j} 의 초기 사실에 대한 인스턴스룰 보여준다. t_{i} 는 근원(source) 트랜지션이다. 근원 트랜지션온 입력 플레이스가 없는 트랜지션으로, 언제나 실행가능하고 출력 플레이스에 토큰을 출력한다. (그림 14)는 질의어를 표현한다. 이 질의어의 부 정형온 증명되어야 하는 목표문장이 된다. t_{i} 는 배출 $(\sin \mathrm{k})$ 트랜지션이다. 배출 트랜지션은 출력 플레이스를 가지지 않 는다. (그림 15)는 단일화(unification)가 가능한 관계률 표 현한 Pr / T 네트이다.

(그림 1) 1형 Pr / T 네트

(그림 2) t 실행전 1형 Pr / T 네트

(그림 3) t_{i} 실행후 1 형 Pr / T 네트

(그림 4) 2형 Pr / T 네트

(그림 5) t 실행전 2형 Pr / T 네트

(그림 6) t_{i} 실행후 2 형 Pr / T 네트

(그림 7) 3형 Pr/T 네트

(그림 8) ti_{i} 실행전 3형 Pr / T 네트

(그림 9) t_{i} 실행후 3형 Pr/T 네트

(그림 10) 4형 Pr / T 네트

$\mathrm{p}_{\mathrm{in}}\left[\beta_{\mathrm{jn} 1}, \beta_{\mathrm{jn} 2}\right]$
(그림 11) t_{i} 실행전 4형 Pr / T 네트

p_{jn}
(그림 12) t_{i} 실행후 4형 Pr/T 네트

(a) 파라메터가 있는 d_{j}

(b) 파라메터가 없는 d_{j}
(그림 13) 초기사실의 Pr / T 네트

(그림 14) 질의어의 Pr / T 네트

(그림 15) 단일화가능관계의 Pr / T 네트

5. 퍼지추톤 알고리줌

5.1 알고리즘

구간값 펴지집합 퍼지추론 알고리즘을 개발하기 위해 혼 절추론[7,9], 퍼지 혼절추론[11,16]을 기반으로 개발하였다. 단일화(unification)는 일차술어논리의 추론에 필수적이다. 단 일화가능관계를 명확히 표훤하기 위해 각 플레이스 p 에 대 한 단일화가능관계집합 $\mathrm{U}(\mathrm{p})$ 가 필요하다. ${ }^{\forall} \mathrm{u}(\theta) \in \mathrm{U}(\mathrm{p}), \mathrm{u}(\theta)$ $=\left(W_{\mathrm{tip},}, \mathrm{w}_{\mathrm{p}, \mathrm{t}}, \theta \mathrm{v}\right)$ 는 mgu(most general unifier) θ 를 갖는 단 일화가 가능한 쌍 $\left(\mathrm{w}_{\mathrm{ti}, \mathrm{p}}, \mathrm{w}_{\mathrm{p}, \mathrm{j}}\right)$ 를 표헌한다. 여기에서 $\mathrm{w}_{\mathrm{ti,p}}$ 는 t_{i} 에서 p 로 들어오는 아크에 관한 기호합이고, $\mathrm{w}_{\mathrm{p}, \mathrm{t}}$ 는 p 에서 t_{i} 로 나가는 아크의 기호합이다. 단일화인자(unifier)의 믿음 강도는 $\left[\mathrm{v}_{\mathrm{il}}, \mathrm{v}_{\mathrm{i} 2}\right]$ 이다. 도출(resolution)을 사용하기 위해 단일 화는 보수기호를 갖는 쌍(complementary signed occurrences)에서만 실행된다.
$\mathrm{C}_{1}, \mathrm{C}_{2}: \mathrm{m}$ 플레이스와 n 트랜지션을 갖는 FPN 의 투사행렬; $\mathrm{F}_{\mathrm{n} 1}$, $\mathrm{F}_{\mathrm{n} 2}$: 민음강도행렬;

Repeat for $k=1$ until $k=2$

1. $A_{k}:=C_{n \times n k}, D_{k}:=F_{n k}, F_{n k}$ 은 $n \times n$ 행렬.
$\mathrm{V}_{\mathrm{ik}}=f\left(\mathrm{t}_{\mathrm{i}}\right)$ 는 패지생섬규칙의 민음강도 $(\mathrm{i}=1,2, \cdots, \mathrm{n})$.

$$
\mathbf{F}_{\mathrm{nk}}=\begin{gathered}
\mathbf{t}_{1} \\
\\
\mathbf{t}_{2} \\
\\
\\
\\
\mathbf{t}_{n-1} \\
\mathbf{t}_{\mathrm{n}}
\end{gathered}\left[\begin{array}{cccccc}
\mathbf{v}_{\mathrm{ik}} & 0 & 0 & \cdots & 0 & 0 \\
0 & \mathbf{v}_{2 k} & 0 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & \mathbf{v}_{n-1 \mathbf{k}} & 0 \\
0 & 0 & 0 & \cdots & 0 & \mathbf{v}_{\mathrm{nk}}
\end{array}\right]
$$

2. Repeat for $\mathrm{i}=1$ until $\mathrm{i}=\mathrm{n}$

만일 $\mathrm{V}_{i 1}<\lambda$ 이면 $\left[\mathrm{D}_{k} \mid \mathrm{A}_{k}\right]$ 의 i 번헤 행에 있는 각 요소를 0 으로 한다.
3. Repeat for $i=1$ until $i=m$;
3.1 i 번째 열을 제거한 $\left[\mathrm{D}_{\mathrm{k}} \mid \mathrm{A}_{\mathrm{k}}\right]$ 에서 단일화가 가능한 행의 쌍들 에 대해 음이 아는 선형조합(nonegative linear combination) 의 결과인 모든 헴을 [$\left.D_{k} \mid A_{k}\right]$ 예 추가한다. 이때 여기에 대 응하는 단일화 인자와 단일화 인자의 믿음값 $v_{i k}$ 도 각 행의 쌍에 붙인다. 만일 $\mathrm{v}_{\mathrm{ik}}<\lambda$ 이면 추가되는 가 행의 요소를 0 으 로 치환한다.
$3.2\left[\mathrm{D}_{\mathrm{k}} \mid \mathrm{A}_{\mathrm{k}}\right]$ 의 A_{k} 의 i 번观 열이 null이 아넌 행을 $\left[\mathrm{D}_{\mathrm{k}} \mid \mathrm{A}_{\mathrm{k}}\right]$ 에 서 졔거한다.
믿옴값 평가함수를 이용하여 믿음값 v 를 계산한다.
(알고리즘)
$n \times n$ 믿음강도 행렬과 $n \times m$ 투사행렬로 구성된 $n \times(n+$ m)행렬올 가지고 알고리즘을 실행한다. 알고리즘은 플레이 스의 수인 m 단계로 구성된다. 각 단계에서 투사행렬의 한 개 씩의 열이 음이 아닌 선형조합을 실행하여 제거된다.

5.2 예

P 와 A 는 술어 Parent와 Ancestor를 표시한다. D, J 그리 고 M은 David, John 그리고 Michael을 각각 표시한다. 예 에서 사용하는 생성규칙은 R 1 과 R 2 이다.

$$
\begin{aligned}
& R=\left\{R_{1}, R_{2}\right\} \\
& R_{1}: P(x, y) \rightarrow A(x, y) \wedge B(x, y)\left[v_{11}=0.80, v_{12}=0.90\right] \\
& R_{2}: P(x, z) \wedge A(z, y) \rightarrow A(x, y)\left[v_{21}=0.70, v_{22}=0.80\right]
\end{aligned}
$$

임계값 $\lambda=0.20$ 이다. $\mathrm{P}(\mathrm{D}, \mathrm{J})$ 과 $\mathrm{P}(\mathrm{J}, \mathrm{M})$ 은 믿음값은 각각 $\left[\mathrm{v}_{31}=0.80, \mathrm{v}_{32}=0.90\right]$ 이고 $\left[\mathrm{v}_{41}=0.70, \mathrm{v}_{42}=0.80\right]$ 인 사실이다. 질의어는 "Who is/are the ancestor(s) of Michael?". 즉, $\mathrm{A}(\mathrm{x}, \mathrm{M})$ 이다. 여기에서 믿음값은 $\left[\mathrm{v}_{51}=1.00, \mathrm{v}_{52}=1.00\right]$ 이다. 이 예의 FPN표현과 투사행렬은 (그림 16)(a)~(그림 16)(c) 에 있다. 여기에서는 믿음값 계산의 편의상 규칙의 전제부 와 결론부에 펴지개념이 없는 것으로 가정한다.

(a) FPN 표현

예에 대한 단일화가 가능한 콴계집합은

(1) $U($ Parent $)=\left\{u\left(\theta_{11}\right)=\left((D, J),(x, y),(D / x, J / y)_{V_{31}}\right)\right.$, $u\left(\theta_{21}\right)=\left((D, J),(x, z),(D / x, J / z) v_{31}\right)$, $\left.\mathrm{u}\left(\theta_{31}\right)=(\mathrm{J}, \mathrm{M}),(\mathrm{x}, \mathrm{y}),(\mathrm{J} / \mathrm{x}, \mathrm{M} / \mathrm{y})_{\mathrm{v}_{41}}\right)$, $\left.\mathrm{u}\left(\theta_{41}\right)=\left((\mathrm{J}, \mathrm{M}),(\mathrm{x}, \mathrm{z}),(\mathrm{J} / \mathrm{x}, \mathrm{M} / \mathrm{z})_{\mathrm{v} 11}\right)\right\}$
(2) $\mathrm{U}($ Ancestor $)=\left\{u\left(\theta_{51}\right)=\left((\mathrm{x}, \mathrm{y}),(\mathrm{x}, \mathrm{M}),(\mathrm{M} / \mathrm{y}) \mathrm{v}_{\mathrm{al}}\right)\right.$,

$$
\begin{aligned}
u\left(\theta_{6}\right)= & (((x, y),(x, M)),((x, y),(z, y)), \\
& \left.\left.(M / y, z / x) v_{b}\right)\right)
\end{aligned}
$$

(3) $\mathrm{U}($ Parent $)=\left\{\mathrm{u}\left(\theta_{12}\right)=\left((\mathrm{D}, \mathrm{J}),(\mathrm{x}, \mathrm{y}),(\mathrm{D} / \mathrm{x}, \mathrm{J} / \mathrm{y})_{\mathrm{v}_{32}}\right)\right.$,
$u\left(\theta_{22}\right)=\left((\mathrm{D}, \mathrm{J}),(\mathrm{x}, \mathrm{z}),(\mathrm{D} / \mathrm{x}, \mathrm{J} / \mathrm{z})_{32}\right)$,
$u\left(\theta_{32}\right)=\left((J, M),(x, y),(J / x, M / y)_{v_{42}}\right)$,

(b) 투사행렬 C_{1}

$\mathrm{C}_{2}=$| t_{1} |
| :--- |
| t_{2} |
| t_{3} |
| t_{4} |
| t_{5} |\(\left[\begin{array}{cc}\mathrm{A} \& \mathrm{P}

(\mathrm{x}, \mathrm{y}) \mathrm{v}_{12} \& -(\mathrm{x}, \mathrm{y})

(\mathrm{x}, \mathrm{y}) \mathrm{v}_{22}-(\mathrm{z}, \mathrm{y} \& -(\mathrm{x}, \mathrm{z})

0 \& (\mathrm{D}, \mathrm{J}) \mathrm{v}_{32}

0 \& (\mathrm{~J}, \mathrm{M}) \mathrm{v}_{42}

-(\mathrm{x}, \mathrm{M}) \& 0\end{array}\right]\)
(c) 투사행렬 C_{2}
(그림 16) 예의 FPN 표현과 투사행렬
주어진 예에 대한 알고리즘의 실행은 투사행렬을 이용하여 다음과 같이 표현할 수 있다.

\Downarrow

	($\mathrm{J} / \mathrm{x}, \mathrm{M} / \mathrm{y})_{\mathrm{v}_{11} \mathrm{~V}_{41}}$	0	0	v_{41}	0	0	$\begin{gathered} \mathrm{A} \\ \left(\mathrm{~J}, \mathrm{M}_{1} \mathrm{v}_{11 \mathrm{~V}_{41}}\right. \end{gathered}$
$\left(\mathrm{t}_{2}(\mathrm{~J} / \mathrm{x}, \mathrm{M} / 2)_{\mathrm{v}_{21}}+\mathrm{t}_{4}\right) \mathrm{v}_{41}$		($\mathrm{J} / \mathrm{x}, \mathrm{M} / \mathrm{z})_{\mathrm{v}_{2} \mathrm{~V}_{41}}$	0	v_{41}	0	0	(J, y) $\mathrm{V}_{21} \mathrm{~V}_{41}-\mathrm{M}, \mathrm{y} \mathrm{V}_{41}$
$\left(t_{1}(\mathrm{D} / \mathrm{x}, \mathrm{J} / \mathrm{y}) \mathrm{v}_{11}+\mathrm{t}_{3}\right) \mathrm{v}_{31}$	($\mathrm{D} / \mathrm{x}, \mathrm{J} / \mathrm{y})_{112} \mathrm{v}_{31}$	0	v_{31}	0	0	0	$(\mathrm{DJ})_{\mathrm{l}_{11} \mathrm{~V}_{31}}$
$\left(\mathrm{t}_{2}(\mathrm{D} / \mathrm{x}, \mathrm{J} / \mathrm{z}) \mathrm{v}_{21}+\mathrm{t}_{3}\right) \mathrm{v}_{31}$	0	(D/X, J/z) $\mathbf{v 2 v}_{21} \mathrm{v}_{11}$	${ }_{31}$	0	0	0	(D, $\left.)^{()_{212} V_{31}-(J, y)}\right)_{\mathbf{v}_{31}}$
${ }_{5} \mathrm{~V}_{51}$	0	0	0	0	vst	0	-(x, M)

\Downarrow

$$
\left.\mathrm{u}\left(\theta_{42}\right)=\left((\mathrm{J}, \mathrm{M}),(\mathrm{x}, \mathrm{z}),(\mathrm{J} / \mathrm{x}, \mathrm{M} / \mathrm{z}) \mathrm{v}_{42}\right)\right\}
$$

(4) $\mathrm{U}($ Ancestor $)=\left\{\mathrm{u}\left(\theta_{52}\right)=\left((\mathrm{x}, \mathrm{y}),(\mathrm{x}, \mathrm{M}),(\mathrm{M} / \mathrm{y}) \mathrm{v}_{\mathrm{a}}\right)\right.$,

$$
\begin{aligned}
\mathrm{u}\left(\theta_{6}\right)= & (((\mathrm{x}, \mathrm{y}),(\mathrm{x}, \mathrm{M})),((\mathrm{x}, \mathrm{y}),(\mathrm{z}, \mathrm{y})), \\
& \left.\left.(\mathrm{M} / \mathrm{y}, \mathrm{z} / \mathrm{x})_{\left.\mathrm{v}_{\mathrm{b}}\right)}\right)\right\} .
\end{aligned}
$$

여기에서 $\mathrm{V}_{\mathrm{al}}, \mathrm{v}_{\mathrm{a} 2}$ 과 $\mathrm{Vbl}_{1}, \mathrm{v}_{\mathrm{b}}$ 는 t_{1} 과 t_{2} 가 실행될 때 각각 계 산되는 사실의 믿음값이다.
$\mathrm{T}_{11}\left(\mathrm{t}_{5}\right)$ 와 $\mathrm{T}_{21}\left(\mathrm{t}_{5}\right)$ 에서 $(\mathrm{J} / \mathrm{x}) 0.56$ 와 $(\mathrm{D} / \mathrm{x}) 0.392$ 를, $\mathrm{T}_{21}\left(\mathrm{t}_{5}\right)$ 와 $\mathrm{T}_{22}\left(\mathrm{t}_{5}\right)$ 에서 $(\mathrm{J} / \mathrm{x}) 0.72$ 와 $(\mathrm{D} / \mathrm{x}) 0.576$ 을 각각 얻는다. $\lambda=0.20$ 이 고 $0.56>\lambda, 0.392>\lambda$ 이므로 질의어 $\mathrm{A}(\mathrm{x}, \mathrm{M})$ 에 대한 답은 $\mathrm{A}(\mathrm{J}$, $\mathrm{M})[0.56,0.72]$ 와 $\mathrm{A}(\mathrm{D}, \mathrm{M})[0.392,0.576]$ 이다. 이들은 서로 다 른 퉁로를 퉁해 결론에 도달하였으므로 믿음값결합함수에 의해 쳐종적인 졀론의 믿음값은 다음과 같이 평가된다.

$\mathrm{t}_{1} \mathrm{~V}_{12}$							A	P
	v_{12}	0	0	0	0	0	$(\mathrm{x}, \mathrm{y})_{\mathrm{v}_{12}}$	-(x, y)
2	0	v_{2}	0	0	0	0	(x, y) vzz-(z, y)	$-(\mathrm{x}, \mathrm{z})$
$\mathrm{t}_{3} \mathrm{~V}_{2}$	0	0	v32	0	0	0	0	($\mathrm{D}, \mathrm{J})_{32}$
42	0	0	0	v_{42}	0	0	0	(J, M) v_{42}
${ }_{15} \mathrm{~V}_{52}$	0	0	0	0	v_{52}	0	-(x, M)	0

목표 트랜지션 t_{5} 를 포함한 다음과 같은 식을 얻는다.
$T_{11}=\begin{aligned} & t_{1} \\ & t_{2} \\ & t_{3} \\ & t_{4} \\ & t_{5}\end{aligned}\left[\begin{array}{l}v_{11} \times v_{41} \\ 0 \\ 0 \\ v_{41} \\ v_{11} \times v_{41} \times v_{51}\end{array}\right] \begin{aligned} & (\mathrm{J} / \mathrm{x}, \mathrm{M} / \mathrm{y})\left(\mathrm{v}_{11} \times \mathrm{v}_{41}=0.56\right) \\ & (\mathrm{v} / \mathrm{x})\left(\mathrm{v}_{11} \times \mathrm{v}_{41} \times \mathrm{v}_{51}=0.56\right)\end{aligned}$

t_{1}	$\min \left(v_{31}, v_{11} \times v_{41}\right)$	$(\mathrm{J} / \mathrm{x}, \mathrm{M} / \mathrm{y})\left(\min \left(\mathrm{v}_{31}, \mathrm{v}_{11} \times \mathrm{v}_{41}\right)=\min (0.80,0.56)=0.56\right)$
t_{2}	$\min \left(v_{31}, v_{11} \times v_{41}\right) \times v_{21}$	$(\mathrm{D} / \mathrm{x}, \mathrm{J} / \mathrm{z})(\mathrm{M} / \mathrm{y})\left(\min \left(\mathrm{v}_{31}, \mathrm{v}_{11} \times \mathrm{v}_{41}\right) \times{ }_{\mathrm{v}_{21}}=0.392\right)$
$\mathrm{T}_{21}=t_{3}$	$\min \left(v_{31}, v_{11} \times{ }_{v_{41}}\right)$	$(\mathrm{M} / \mathrm{y})\left(\min \left(\mathrm{v}_{31}, \mathrm{v}_{11} \times \mathrm{v}_{41}\right)=0.56\right)$
t_{4}	V_{41}	$\left(\mathrm{v}_{41}=0.70\right)$
t_{5}	$\min \left(v_{31}, v_{11} \times v_{41}\right) \times v_{21} \times v_{51}$	$(\mathrm{D} / \mathrm{x})\left(\mathrm{min}\left(\mathrm{v}_{31}, \mathrm{v}_{11} \times \mathrm{v}_{41}\right) \times \mathrm{v}_{21} \times \mathrm{v}_{51}=0.392\right)$

$\mathrm{T}_{12}=\begin{aligned} & \mathrm{t}_{1} \\ & \mathrm{t}_{2} \\ & \mathrm{t}_{3} \\ & \mathrm{t}_{4} \\ & \mathrm{t}_{5}\end{aligned}\left[\begin{array}{l}\mathrm{v}_{12} \times \mathrm{v} 42^{0} \\ 0 \\ \mathrm{v}_{42} \\ \mathrm{v}_{12} \times \mathrm{v}_{42} \times \mathrm{v}_{52}\end{array}\right] \begin{aligned} & (\mathrm{J} / \mathrm{x}, \mathrm{M} / \mathrm{y})\left(\mathrm{v}_{12} \times \mathrm{v}_{42}=0.72\right) \\ & \\ & \left(\mathrm{v} \mathrm{v}_{42}=0.80\right) \\ & (\mathrm{J} / \mathbf{x})\left(\mathrm{v}_{12} \times \mathrm{v}_{42} \times \mathrm{v}_{52}=0.72\right)\end{aligned}$

$$
\begin{aligned}
& \beta_{c 1}=\beta_{\text {comb }}(0.56,0.397)=\max (0.56,0.397)=0.56 \\
& \beta_{c 2}=\beta_{\text {comb }}(0.72,0.576)=\max (0.72,0.576)=0.72
\end{aligned}
$$

Jack과 David는 Michael의 조상일 수 있고, Jack이 보다 더 Michael의 조상인 것 같다. 이매의 믿음값은 $[0.56,0.72]$ 가 된다.

6. 결 튼

본 논문에서는 구간값 퍼지집합을 기반으로 하는 지식 표현과 근사추론을 위한 퍼지 Pr / T 표현올 제안하였다. 이 방법은 기존의 퍼지집합올 기반으로 하는 퍼지 Pr / T 네트 의 표현법과는 달리 구간값 퍼지집합을 사용한다. 그러므로 단일한 퍼지값이 아닌 구간값으로 퍼지값올 표현하는 분야 에 적합한 지식표현과 추론방법을 제공한다. 알고리즘에서 사용하는 민음값 함수도 \max 와 \min 연산만을 사용하지 않 고, 규칙의 전제부와 결론부에 퍼지개념의 유무에 따라 밀 음값을 평가하기 때문에 기존의 방법보다 사람들이 문제해 결에 사용하는 추론과 직관에 보다 더 유사하다.

참 고 문 헌

[1] Chen, S., Ke, J. and Chang, J., "Knowledge Representation Using Fuzzy Petri-nets," IEEE Trans. on KDE, Vol.2, No.3, pp.311-319, Sep., 1990.
[2] Chen, Shyi-Ming, Hsiao, Wen-Hoar, and Jong, Hoei-Tzy, "Bidirectional Approximate Reasoning Based on Intervalvalued Fuzzy Sets," Fuzzy Sets and Systems 91, pp.339353, 1997.
[3] Chen, Shyi-Ming, and Hsiao, Wen-Hoar, "Bidirectional Approximate Reasoning For Rule-based Systems Using In-terval-valued Fuzzy Sets," Fuzzy Sets and Systems 113, pp.185-203, 2000.
[4] Fukami, S., Mizumoto, M., and Tanaka, K., "Some Considerations on Fuzzy Conditional Inference," Fuzzy Sets and Systems, Vol.4, pp.243-273, 1980.
[5] Gorzalczany, M. B., "A Method of Inference in Approximate Reasoning Based in Interval-valued Fuzzy Sets," Fuzzy Sets and Systems 21, pp.1-17, 1987.
[6] Gorzalczany, M. B., "An Interval-valued Fuzzy Inference

Method-Some Basic Properties," Fuzzy Sets and Systems 31, pp.243-251, 1989.
[7] Lin, C., et al., "Logical Inference of Horn Clauses in Petri Net Models," Knowledge and Data Engineering, 5, pp.416425, 1993.
[8] Looney, G. C. and Alfize, A. A., "Logical Controls via Boolean Rule Matrix Transformation," IEEE Trans. on SMC, Vol.17, No.6, pp.1077-1082, Nov./Dec., 1987.
[9] Peterka, G., and Murata, M., "Proof Procedure and Answer Extraction in Petri Net Model of Logic Programs," IEEE Trans. Software Engineering, 15, pp.209-217, 1989.
[10] Turksen, I. B., "Interval-valued Fuzzy Sets Based on Normal Forms," Fuzzy Sets and Systems 20, pp.191-210, 1986.
[11] Yu, Sheng-Ke, "Knowledge Representation and Reasoning Using Fuzzy Pr/T net-systems," Fuzzy Sets and Systems, 75, pp.33-45, 1995.
[12] Zadeh, L. A., "Fuzzy Sets," Information and Control 8, pp. 338-353, 1965.
[13] Zwick, R. E., Carkstein and Budescu, D. R., "Measures Of Similarity Among Fuzzy Concepts : A Comparison Analysis," International J. Approximate Reaoning, 1, pp.221-242, 1987.
[14] 전명근, 변중남, "Fuzzy Petri Nets를 이용한 퍼지추론 시스 템의 모델링 및 추론기퐌의 구현", 전자공학희논문지, 제 29 권 제7호, pp.508-519, 1992.
[15] 조상엽, 김기태, "퍼지폐트리네트를 이용한 퍼지생성규칙의 표현", 한국정보과학화논문지, 제21권 제2호, $\mathrm{pp} .298-306,1994$.
[16] 조상엽, 이동은, "퍼지 Pr / T 네트를 기반으로 하는 술어논리 수준의 지식표현과 떠지추론", 인터넷정보학희논문지, 제 2 권 제2호, pp.117-126, 2001.

조 상 엽
e-mail : sycho@chungwoon.ac.kr
1986 년 한남대학교 전자계산학과(공학사)
1988년 중앙대학교 대학원 전자계산학과 (이학석사)
1993년 중앙대학교 대학원 전자계산학과
(공학박사)
1993년~1994년 중앙대학교 컴퓨터소프트웨어 연구소 객원연구원
1995 년 ~현재 청운대학교 인터넷컴퓨터학과 교수
관심분야 : 인공지능, 퍼지이론, 페트리네트 웅용, 인터넷

[^0]: * 본 논문은 청운대학교 교내연구비 지원 과졔임.
 \dagger 종신화원: 청운대학교 인터냉켬퓨터학과 교수
 논문접수 : 2002년 6월 2딜, 심사완료: 2002년 9월 27일

