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Compiler triggered C level error check
Zhiwen Zheng' - Jonghee M. Youn™ - Jongwon Lee™ - Yunheung Paek™

ABSTRACT

We describe a technique for automatically proving compiler optimizations sound, meaning that their transformations are always
semantics-preserving. As is well known, IR (Intermediate Representation) optimization is an important step in a compiler backend. But
unfortunately, it is difficult to detect and debug the IR optimization errors for compiler developers. So, we introduce a C level error check
system for detecting the comrectness of these IR transformation techmiques. In our system, we first create an [R-to-C converter to
translate IR to C code before and after each compiler optimization phase, respectively, since our technique is based on the Memory
Comparison-based Clone(MeCC) detector which is a tool of detecting semantic equivalency in C level. MeCC accepts only C codes as its
input and it uses a path-sensitive semantic-based static analyzer to estimate the memory states at exit point of each procedure, and
compares memory states to determine whether the procedures are equal or not. But MeCC cannot guarantee two semantic-equivalency
codes always have 100% similarity or two codes with different semantics does not get the result of 100% similarity. To increase the
reliability of the results, we describe a technique which comprises how to generate C codes in [R-to-C transformation phase and how to
send the optimization information to MeCC to avoid the occurrence of these unexpected problems. Our methodology is illustrated by three
familiar optimizations, dead code elimination, instruction scheduling and common sub-expression elimination and our experimental results
show that the C level error check system is highly reliable.
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1. Introduction

Compiler is an important part of the software
development infrastructure relied upon by programmers. If
a compiler is faulty, then all programs compiled with it
would have some errors. Unfortunately, it is hard to
detect and debug compiler errors by programmers. There
are two main reasons why it is difficult. First, it is not
easy to inspect the output of the compiler. Problems of
the output are often found only by running a compiled
program. Second, it is difficult to determine whether
errors come from the compiler or the source program that
was compiled when problems are detected.

For these reasons, it is very useful to develop tools and
techniques that give compiler developers and programmers
confidence in their compilers. One way to gain confidence
in the correctness of a compiler is to run it on various
benchmark programs and check that the optimized version
of each program produces correct results on various
inputs. While this method can check the correctness of
the compiler, it cannot provide any useful information
when the error appears, and it is difficult to know which
phase of the compiler causes the errors.

To ensure that a compiler works correctly, it should be
proven to be sound, which means each compilation phase
does not change the semantics of the source program.
Optimizations, but sometimes even in complete compilers,
have been proven sound by hand [1, 2, 3, 4, 5, 6, 7, 8&l.
However, it takes a long time and requires a lot of effort
to manually prove the soundness of a compiler.

In this paper, we present a new technique for proving
the soundness of compiler optimizations in C level. We
first create an IR-to-C converter to translate
IR(intermediate representation) to C code before and after
each compiler optimization phase, respectively, since our
technique is based on the Memory Comparison-based
Clone(MeCC) detector{9] which is a tool of detecting
semantic equivalency in C level. Then we input the two
C codes generated by IR-to-C converter into MeCC to
detect whether or not they keep semantic equivalence. In
this way, we can prove each compiler phase respectively,
if there exist some problems in a specific phase, we just
need to modify the part of the code.

This paper organized as follows. Section 2 presents the
architecture of IR optimization error check system.
Section 3 presents the technique of how to increase the
whole system’s reliability. Experimental result about code
size and the accuracy of the whole system are presented
in section 4, and Section 5 offers our Conclusions.

2. Architecture of the IR Optimization Error
Check System

We describe a technique for automatically proving
compiler optimizations sound, meaning that their
transformations are always semantics-preserving. As is
well known, IR (Intermediate Representation) optimization
is an important step in a compiler backend. In this step,
a compiler can serve several optimization techniques such
dead code
But unfortunately, the IR
optimization errors can be difficult for compiler developers
to detect and debug, as briefly mentioned in Section 1.We
create a C level error check system to ensure the
correctness of these IR transformation techniques. In our
system as shown in (Figure 1), we first create an
IR-to-C converter to translate IR to C code before and
after each compiler optimization phase, respectively, since
our technique is based on the Memory Comparison-based
Clone(MeCC) detector which is a tool of detecting
semantic equivalency in C level. Our IR-to-C converter is
based on a compiler named SoarGen[l10] which is a
re-targetable compiler platform we have invented. Then
we input the two C codes generated by IR-to-C
converter to MeCC to detect whether they keep semantic
equivalence or not.

MeCC accepts only C codes as its input and it uses a
path-sensitive semantic-based static analyzer to estimate
the memory states at exit point of each procedure, and
compares memory states to determine whether the
procedures are semantically equivalent or not. Although it
can effectively detect semantic clones, sometimes the
result of MeCC cannot get 100% similarity. To increase
the credibility of the results, we describe a technique
which comprises how to generate C codes in IR-to-C
transformation phase and how to send the optimization
information to MeCC to avoid the occurrence of these
unexpected problems.

And with the optimization information, MeCC can get
100% similarity when the two C codes are semantically
equivalent. In this way, we avoid some unexpected
problems and increase the similarity rate of the result. So
when the result is 100%, it means the C codes are
semantically equivalent, and also means the IR codes
before and after optimizations are semantically equivalent.
When the result is not 100%, we can say that the two C
codes are not semantically equivalent, and the IR
optimization phase runs incorrectly. So in this way, we
can find which phase generates errors.

as common sub-expression elimination,

elimination and so on.



(Figure 1) Infrastructure for IR optimization error check system

3. How to Increase the Reliability

The MeCC uses a path-sensitive semantic-based static
analyzer to estimate the memory states at exit point of
each procedure, and compares memory states to determine
whether the procedures are semantically equivalent or not.
Since the abstract memory states have a collection of the
within
procedures, it can effectively detect semantic clones.
However, It is not perfect since the disadvantage of
MeCC is that it may cause some unexpected problems.

memory effects along the execution paths

For instance, MeCC cannot guarantee two semantic-
equivalency codes always have 100% similarity or two
codes with different semantics cannot get the result of
100% similarity. MeCC only compares the memory state
at exit point of procedure, it does not care whether the
intermediate phases keep the same semantic or not, so it
may still get 100% similarity ratio even if the two codes
are not semantically equivalent. At the exit point of the
procedure, if the number of memory entries is different
from each other, it will not get 100% similarity ratio even
if the two codes are semantically equivalent. We will
illustrate these problems by three familiar optimizations
such as dead code elimination, instruction scheduling and
common sub-expression elimination.

3.1 Dead Code Elimination

There are 3 different cases after dead code elimination.

The first case: definition - definition

As shown in (Figure 2), the variable VASM_R[140] is
defined at the first line, and then defined again at the
second line without any use. In this case, it does not
affect the result to eliminate the previous definition of
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VASM_R[140], and the memory state of the variable is
still equal at the exit point of the procedure. Therefore
the optimized version will not cause different abstract
memory state,

VASM_R[140] = VASM_R[139] + 1;
VASM_R(140] = VASM_R[139] + VASM R[121];
VASH_R[141] = VASN_R[140] + 4;

Original C code

VASM_R[140] = VASM_R[139] + VASM_R[121];
VASM_R[141] = VASM_R[140] + 4;

Optimized C code
(Figure 2) Dead code elimination (1)

The second case : definition - use - definition

As shown in (Figure 3), if the compiler eliminates a
dead code incorrectly, it will affect the other variables,
and the value of some other variables will be changed,
which will cause some of the memory states not to keep
equal at the exit of the procedure. Therefore MeCC will
not get 100% similarity, and it shows that the dead code
elimination algorithm is performed incorrectly.

VASM_R[141] = VASM_R(140] + VASM_R(122];
VASH_R[140] = VASM_R(139] + VASM _R(121];
VASN_R(142] = VASM_R[140] + 4;
VASM_R[140) = VASM_R(139] + 1,

Original C code

VASM R[141] = VASM R([140] + VASM R[122];
VASM_R([142] = VASM_R[140] + 4
VASM_R[140] = VASK_R[139] + 1.
Optimized C code
(Figure 3) Dead code elimination (2)

The third case: definition - no use

VASH_R[141] = VASKH R(140] + VASM_R[122]:
// VASM_R[141]) will not use until the end of the procedure

VASM_R([142] = VASN_R[140] + 4;
VASM_R[143] = VASK R[142] + 1;
Original C code

VASH_R[142] = VASM_R[140] + 4;

VASM_R([143] = VASM_R[142] + 1.
Optimized C code

(Figure 4) Dead code elimination (3)
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As shown in (Figure 4), the variable VASM_R[141] is
defined at the first line, but it will not be used until the
end of the procedure, so the first line is a dead code. But
when the two C codes are input to MeCC, the result
will not get 100% similarity since the memory state of
the variable VASM_R[141] does not keep equality.

To avoid this case, we introduce a new variable, which
is assigned to the variable whose later definition will be
eliminated, and insert an assignment instruction just
before the eliminated code as shown in (Figure 5).
Finally, the information of the eliminated variable is sent
to MeCC in order to ignore the difference of the memory
state of the variables during the memory comparison
algorithm and to get higher similarity.

temp = VASH _R[141];

VASM R{141] = VASK R(140] + VASM R[122];
// VASM_R[141] will not use until the end of the procedure

VASM_R[142] = VASN_R[140] + 4;
VASM_R[143) = VASN R[142] + 1;
Original C code

temp = VASN_R[141];

VASN_R[142] = VASM_R[140] + 4;

VASN_R(143] = VASM_R(142] + 1.
Optimized C code

(Figure 5) Dead code elimination (4)

32 Common Sub-expression Elimination

As shown in (Figure 6), the code is optimized correctly
but the optimized code may have some more temporary
variables than original code, so in this case, it causes
some unexpected problems in MeCC phase. Since the
abstract memory states have a collection of all the
memory effects along the execution paths within
procedures, the abstract memory state will certainly
collect the temporary variable generated by optimization
phases. So the optimized code will have some more
temporary varable states in the abstract memory state.
These abstract memory states of the optimized code
cannot match with the one of the original code, so the
result will not get 100% similarity ratio even if the two
codes are semantically equivalent.

VASH_R[139] = VASM_M[VASM_FPR + (-24));
VASM_R{140] = VASM_R[139) + VASM_R[138] + 1;
VASM_R[141] = VASM_R[139] + VASM_R[138] + VASM_R[121];

Original C code

VASM_R[139] = VASM M[VASM_FPR + (-24)];
TEMP = VASM_R[139] + VASM_R[138];
VASH_R(140] = TENP + 1;

VASM_R[141] = TEMP + VASM_R[121];

Optimized C code

(Figure 6) Common sub-expression elimination

To avoid this case, we need to send the variable
information to MeCC so that it can ignore the difference
of the memory state of the variable during the memory
comparison algorithm and get higher similarity. Certainly
the temporary variables generated by optimization phase
keep signatures so that we can guarantee that the name
of the temporary variable is unique in the whole
procedure.

3.3 Instruction Scheduling

After instruction scheduling, if an optimized phase does
not break the define-use (DU) chain of the procedure, it
means the optimization keep semantically equivalent, also
the memory state of each variables at the exit point of
the procedure keep the same, and the result will get
100% similarity. If an optimized phase breaks the DU
chain of the procedure, it will change some variable
states, and the result of MeCC will not get 100%
similarity. But in some special case, although the code
motion is incorrect, MeCC will still get 100% similarity.

(Figure 7) show an example of an incorrect
optimization. The variable VASM_R[140] is used in line 2,
and its definition is in line 1. After instruction scheduling,
the DU chain of variable VASM([140] is broken, but the
memory state at the exit point of the procedure is not
changed since the instruction “printf” is not memory
effect instruction. Therefore it causes the result of 100%
similarity even if the code motion is incorrect.

VASN_R(140] = VASM_R(139]
printf (*xd", VASM_R[140]) ;
VASH_R[140] = VASM_R[139] + VASM_R([121);

Original C code

+

1;

VASM_R(140] = VASM_R([139] + 1;
VASH_R[140] = VASM_R[139] + VASM R[121];
printf (“%d=, VASM_R[140]) ;

+

Optimized C code
(Figure 7) Instruction scheduling (1)



To avoid this case, we introduce new variables, which
are assigned to all the function parameters. Certainly we
first need to guarantee the new variables are unique in
the whole procedure as shown in (Figure 8).

VASHM R[140) = VASM R[139] + 1;

temp = VASM R[140];

printf (“%d", VASM_R[140]);

VASM_R[140]) = VASM_R[139] + VASM_R[121];

Original C code

VASK_R[140] = VASM_R[139] + 1;
VASM_R[140] = VASM_R[139] + VASM R[121];
temp = VASM_R[140];

printf ("%d=~, VASM_R[140]) ;

Optimized C code
(Figure 8) Instruction scheduling (2)

We use these new variables to check whether the
function calls are semantically equivalent or not. If the
memory states of the variables are equal, it means all the
function parameters keep the same, it also means the
semantic of these function calls are equivalent. In these
ways, we avoid the occurrence of these unexpected
problems to increase the reliability of whole system.

4, Experimental Results

In order to test the accuracy of our IR optimization
error check system, our IR-to-C translator coverts IR to
C code at each optimization phases in the compiler, then
compares the two generated C codes before and after IR
optimization phase. To guarantee the correctness of the
IR optimization, we optimized it manually. We test the
accuracy ratio of IR optimization error check system in
20 small-scale open projects, and in IR
optimization phase, we manually optimize them correctly
and incorrectly. Then we compare the original code with
the incorrect optimized code and correct optimized code
respectively. As shown in (Figure 9), the average code
size of the 20 small-scale benchmarks is 5226 lines, but
the average code size of the C code generated by
IR-to-C converter is 24785 lines, it is almost 5 times of
the source code. The generated C code contains the
lowered C code than the original one because IR code
does not keep the original code structures. But it does
not affect the quality of final output code (assembly code)

source
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because the converted C code is only used to evaluate
the correctness of each optimization techniques in the
compiler.

Avarage code size I
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Ccode generated by IR-
to-C converter
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(Figure 9) The average code size of 20 small-scale projects

In (Figure 10), all the 20 comparison results of original
codes and incorrect optimized codes show that the
average accuracy ratio is 100%. But the comparison result
of the correct optimized code is not 100% such that three
of them didn't get 100% similarity, since MeCC produced
unknown value memory state in these three cases. The
average correctness ratio is 85%. This result means our
approach can detect the optimized code
accurately, but ours reports inaccurate result for the

incorrect

correct optimized code in a few case. We will take care
of it in our future work.

average correctnessratio
105%
100% -
95% -
0% A
858 B average correctnessratio |
80%
75%
| Original code and Original code and
| correct incorrect opt d
| code code |
A= - - s ———

(Figure 10) Average correctness ratio of the IR optimization
error check system

5. Conclusion

In this paper, we describe a technique for automatically
proving compiler optimizations sound, meaning that their
transformations are always semantics-preserving. We
create an IR-to-C converter to translate IR to C code
before and after each compiler optimization phase,
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respectively, then input the two C codes generated by
IR-to-C converter to MeCC to detect whether they keep
semantic equivalence or not. Finally, for increasing the
reliability of the whole system, we present some
techniques which comprise how to generate C codes in
IR-to-C transformation phase and how to send the
optimization information to MeCC to avoid the occurrence
of these unexpected problems. Through experiment
results, the accuracy of the whole system is about 92.5%.
Although we have increased some accuracy of the
system, it is still insufficient because of the occurrence of
the unknown values. In the future, we will modify MeCC
to reduce the occurrence of the unknown value memory
states and improve the accuracy of the static analysis.
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