LAROB&IOIA OIZIB& T AFRER| AHOIQ] 8O HE 151

LAROBl A o]F g AR EE Alo] <]
EE3Q W3

TR
2 %

€ =8oME LAROBRAA o)d93E ARERZ d@sAY, ANEE o4z wasie 283 ¢ued
B8 AdUT of ANLBEL G2 B2 ATt axal A AF ZZAME LSS, 61 A BREE Rer
ANt Z2AN 9 Fo| Y 2 gnelFel 4PARA 6(n’) 3 FUHEZ, o714 HAUAE LnAFEL HF

gaeFolet,

Efficient Transformations Between Binary Images and
Quadtrees on a Linear Array with Reconfigurable Optical Buses

Myung Kim'

ABSTRACT

We present efficient algorithms for transforming between binary images and quadtrees on the LAROB. For a binary
image of size nx =, both algorithms run in &(1) time using »° processors. These algorithms are optimal in the sense
that the product of time and number of processors is asymptotically the same as the optimal sequential time which is

(n?).

1. Introduction

Quadtrees are a hierarchical data structure which
is useful to represent binary images. Quadtrees are
attractive since they allow us to be able to perform
a wide range of image operations directly on them.
Thus, it has been of great interest to develop ef-
ficient parallel algorithms for transforming between
binary images and quadtrees, and for performing im-

t A 3 Yoo Adsn FAYY FHERR w5

KK
EEAS 11999 39 U9, YARE 1199949 59 BY

age operations on quadtrees, In this paper, among
these operations, we focus on the transformations
between binary images and quadtrees.

Recently, a number of efficient parallel algorithms
for such transformations were developed on archi-
tectures such as the mesh-connected ocomputer(3],
the SIMD hypercube{l,4], and the reconfigurable
meshl5]. For images of size nxn, the algorithms
in [1,3), and [4] use n* processors. They run in
&(n) time, &log?») time, &(logn) time, respec-
tively. The algorithm in [5] uses #® processors and

1512 S RPEH|SH =X M6 HE6=(996)

runs in 6(1) time.

In this paper, we present efficient algorithms for
the same transformations on an architecture called
linear array with reconfigurable optical buses (LAROB)
[8]. Unlike electronic buses, optical channels allow
multiple messages to be transmitted during a single
bus cycle. In addition to this advantage, parallel sys-
tems with optical interconnections resolve some
limitations of electronic buses such as limited band-
width, capacitive loading, and cross-talkk. By fully
utilizing the power of the optical buses, our algo-
rithms take &(1) time using #° processors for im-
ages of size nxn. These algorithms are optimal in
the sense that the product of time and number of
processors is asymptotically the same as the optimal
sequential time which is 6(n®). Note that any
sequential algorithm for transforming between binary
images and quadtrees takes £Xn%) time, since all
the »’ pixels in the image must be visited during
the transformation process. In fact, Samet[12] gave a
&(»%) time algorithm for the transformations.

The paper is organized as follows : In section 2,
we describe the linear array with reconfigurable
optical buses, and present some constant time
operations that will be used in the algorithms. In
section 3, we define the linear quadtree repre-
sentation of a binary image, and give the quadtree
building algorithm. Its converse algorithm is given
in section 4. Section 5 concludes this paper.

2. The LAROB model

An n processor LAROB is a 1-D reconfigurable
mesh with optical pipelined buses. By setting up
internal port connections properly, the LAROB can
be divided into several pieces, each of which is
called linear array processors with optical pipe-
lined buses (APPB). Thus, we explain the APPB
model followed by the LAROB. The detailed de-
scription of these two computing models can be
found in [8].

21 The APPB model

Consider an n processor APPBI[68,10]. Its pro-
cessors, Py, P, ..
and are connected to the optical bus. The bus is
divided into two segments:upper segment and

, P,-,, are arranged in a row,

lower segment (see Figure 1). The processors write
data to the upper segment, and read data from the
lower segment. During a bus cycle, multiple pro-
cessors can transmit their message by using dif-
ferent time slots of the bus. This is possible because
optical buses are inherently directional, and have
predictable delay per unit length.

The bus consists of three identical waveguides :
the message waveguide, the selection waveguide,
and the reference waveguide. The message wave-
guide is used to transmit messages. The selection/
reference waveguides are used to transmit address
related information. All transmissions are syn-
chronized. The bus length between two adjacent
processors, d, is set so that the messages travelling
on the bus do not overlap with each other. The
end-to-end propagation time is o,=2nr seconds,
where t is the time for a message to travel through
the optical distance d

4__. trangmitting segment

CERIE

receiving segment

(Fig. 1) The APPB model

The APPB uses the time-division multiplexing
techniques for message routing{810]. Time-division
source-oriented multiplexing(TDSM) is used when
the destination processors know the address of the
source processor. In this scheme, each processor is
assigned to a fixed time slot. The processors use
their assigned time slots to send out their messages.
The destination processors receive their messages
when the time slots for the corresponding source

processors arrive through the lower segment of the
bus. With this scheme, multicasting (broadcasting) is
possible since all the messages, which were sent
during a bus cycle, pass by every processor in the
APPB.

Time-division destination-oriented multiplexing
(TDDM) is used when the source processors know
the address of the destination processor. Each pro-
cessor is assigned to a fixed time slot. The source
processors put their message to the time slot of the
destination processor. All the messages are read by
the destination processors simultaneously at the end
of the bus cycle.

Address information can be encoded using the
coincident pulse technique(8,10). Suppose that pro-
cessor P; wants to send a message to processor
P;. P; prepares its message and address related
information before the bus cycle. P; transmits its
message when its time slot arrives during the next
bus cycle. The message is put on the message
waveguide. And the unary coded address information
is put on the selection and reference waveguides as
in Figure 2(a). The prepared information (or pulses)
are transmitted synchronously on the upper segment
of the bus without being changed. However, when
the information passes by a processor on the lower
segment of the bus, a unit delay is introduced on
the message waveguide and the reference wave-
guide. Thus, the pulse on the selection waveguide
coincide the pulse on the reference waveguide at the
destination processor, P;, as in Figure 2(b). Only a
simple hardware mechanism is used for the desti-
nation processor to detect the coincidence of two
pulses. By choosing multiple destinations, the source
can send its message to several destinations during
a single bus cycle.

sel
ref

(a) initial setting (b) at PE()
(Fig. 2) Coincident pulse technique

LAROBAOIIA OIZIG& I AFRER| AKOIS] EEHC! = 1513

22 The LAROB mode!

The array with reconfigurable optical buses (AROB)
[8] is a 2-dimensional reconfigurable mesh with
optical pipelined buses. The linear array with recon-
figurable optical buses, LAROB, is a 1-dimensional
version of it. Consider an n processor LAROB. The
,» Pa_;. They

are arranged in a row, and are connected to two

processors are labeled as Py, P, ..

unidirectional buses, as in Figure 3.

(Fig. 3) Two adjacent processors of a linear array
with reconfigurable optical pipelined buses

As with the APPB, the upper bus is used as the
transmitting segment and the lower bus is used as
the receiving segment. As with a general recon-
figurable network (RN), processors have two ports
(E and W), and are allowed to reconfigure their
internal port connections. Figure 3 shows the case
when P;’s ports are disconnected. Note that the
upper bus into the E port of P; is connected to the
lower bus going out of the same port. This is how
several APPB’s are realized in the LAROB. It is
assumed that for an n processor LAROB, the bus
can carry &(logn) bits as is assumed for a re-
configurable mesh[7]. Each processor can perform
arithmetic and logic operations on &(1) words in
unit time.

2.3 Some constant time LAROB operations

Consider an LAROB which consists of n pro-
cessors, P, Py, -, P,.;. Assume that each
processor has one datum (integer). The LAROB
operations given in Observations 1-5 can be accom-
plished in constant number of steps, {ie, oy

1514 StnYEHM2SE =FX M6 H63=2(396)

time), Observations 1-3 can be easily obtained from
the definitions of TDSM, TDDM, and the coin-
cidental pulse technique. The proofs of Observations
4 and 5 can be found in [9,11].

Observation 1.

When an LAROB is divided into several APPBs,
the processors in each APPB can compute its
relative index inside the APPB in constant time. It
can be done as follows : At the beginning of a
bus cycle, the leader broadcasts its index to all
the processors in the APPB. The other processors
compute their relative indices by subtracting the
index of the leader from their own indices.

Observation 2.

Let #(0), n(1), -+, a{n—1) be a permutation of
0, 1, -+, »—1. Suppose that for all i, 0<i{#,
P, wants to send its data item to Pgy. If the
addresses of the destination processors are known
to the source processors (i.e, P; knows the value
of a(7)), this type of one-to-one communication
can be done in one step.

Observation 3.
Let x(0), (1), -, m{(n—1) be a permutation
of 0,1, -, »—1. Suppose that for all i,

0<i(n, P; wants to receive a data item from
Pyy- If the addresses of the source processors
are known to the destination processors (ie., P;

knows the value of #(?#)), this type of one-to-one
communication can be done in one step.

Observation 4.
The prefix sums of n integers V; with 0<V.<n,
0<i<n—1, and 2, "¢ V,<n, can be computed
in constant number of steps.

Observation 5.
The sum of n integers, V;, such that V<2 and

sum of all V;'s is also less than n can be

computed in constant number of steps.

Let us define some terms that will be used
throughout the paper. P;, 0<i{n, represents the
i-th processor of the LAROB. When an LAROB is
divided into several APPBs, the j-th processor of
the i~th APPB is called as PE(i, j). We use these
two notations interchangeably to give a clear
presentation of the ideas. Pixel (r, ¢), 0<r, c<#, is
the pixel in row r and column ¢. SRM(r, ¢} is the
SRM index of pixel (r, ¢). For an #»nxn image,
SRM(r, ¢} is defined as follows: SRM(r, c)=
¥ 4-1C d—17 4-2€C g—3"**11C1 %3¢y, Where d=logn, r=
Ya-1Ya-znry, and c=c4_1C 4 C16y. SRM(r, ©)

is also represented as SRM(:), where i=»xn+c.

3. From a binary image to a quadtree

A quadtree of an nx»n binary image is defined
as follows : The root represents the entire image. If
not all the pixels in the image are of the same
color, the root has four sons, quadrants, which
represent the NW, NE, SW, and SE blocks of the
image, respectively. This decomposition is done until
the block represented by the corresponding node
consists of only one color. Figure 4(c) is an example
of a quadtree representation of the 8x8 binary
image given in Figure 4(a). The quadrants of each
node are arranged in the order of NW, NE, SW, and
SE from the left, and are labeled with 0, 1, 2, or 3
respectively as in the figure.

A linear quadtree[2] is an efficient way of storing
a quadtree. It is a collection of black leaf nodes,
each of which is represented by a locational code :
(S, L), where S is the shuffled row-major number
of the top leftmost pixel of the block which is
represented by the quadtree node, and L is the level
on which the quadtree node is located (the root is
on level 0). Note that the shuffled row-major
indexing of an 8%8 mesh is given in Figure 5(b).
The fact that each node is represented independently

makes the linear quadtree representation to be a
good candidate for parallel processing. For instance,
the linear quadtree of the binary image in Figure
4(a) is: (0, 2), (13, 3), (14, 3), (22, 3), (24, 2), (33,
3), (34, 3), (36, 2), (40, 2), (45, 3), {46, 3), (48, 1).

(ol G Ll (=R =0 =0 L
el = i = =
—lo(=[—|[~|lojo|c
(=2 = G e (=0 Il = =)
e R I R N = =]

bt fpt [t f it | s P | [

el Dl Ll Ll E=2 £=1 L k=)

== (= (O[O OO
@]

(a) (b)

(Fig. 4) (a) 8x8 binary image, (b) Block decomposi-
tion of the binary image, (c¢) Quadtree representation

012 4 (516 {7 011 {4 {5 {16]17]20|21
8 (9 !10[11{12(13[14|15 2 13 [6 |7 [18119{22(23
16]17]18]19]20]21]22]23 8 19 112]13]24)25(28| 29
24125} 26127128/ 29{30] 31 10111]14| 15{26{27|30]31
32133|34}35|36| 3738|339 32133]136| 37|48 49]52153
40|41]42|43/44]45]46]47 34]35|38]39150]51 54|55
48149|50(51[52|53|54[55 40141 44|45(56|57160|61
56(57)58|59]60]61]62{63 42|43]46{47|58|59(62|63
(a) (b)

(Fig. 5) (a) Linear indexing,
(b) Shuffled-row-major indexing

We now present an algorithm for transforming a
binary image to a quadtree. For a binary image of
size nxn, we use n’ processor LAROB. Pixel (r,
c), 0<7 c{n, of the image is initially stored in
processor P; such that i=rxn+c. That is, pixels
are stored in linear order, one pixel per processor. In
addition to the color of the pixel, each processor

LAROBAOIA OITQAtD AIMER| ANOIQ] ZEX2! 85 1515

knows the side length of the image which is n.
From this input configuration, the algorithm gen-
erates a linear quadtree, and stores its locational
codes in increasing order of their SRM indices, one
code per processor. The locational codes are stored
in the lowest numbered processors of the LAROB.

A brief description of the algorithm is given
below. It consists of 7 phases. The background idea
of the algorithm has been widely used in the
literature [34]. Here we give an efficient way of
implementing it on the LAROB. The detailed de-
scription of each phase follows the algorithm.

Algorithm ImageToQuadtree

1. Compute the SRM index of each pixel.

2. Sort the pixels in increasing order of their
SRM indices.

3. Each processor computes the number of trailing
black pixels of the run where its pixel belongs.

4. Each processor computes the size of the maxi-
mal block its SRM index can represent.

5. Each processor computes the size of the
maximal black block it actually represents with
the current run.

6. Choose the maximal black blocks.

7. The processors which represent a maximal
black block generate the locational code of the
block. All the locational codes are then packed
to the lowest numbered processors, one code
per processor.

Phase 1.

Pixel (r, ¢), 0<7,c{m, is initially stored in pro-
cessor P;, 0<i{#n®, such that i=rxn+c. The
purpose of this phase is to compute the SRM index
of each pixel. If each processor P; computes the
SRM index of its own pixel independently, it takes
&(log n) steps. Here, we show how it can be done
in &(1) time on the LAROB. Phase 1 consists of 5
steps as follows :

1516 SRJBEX2ISH =2X| M6 H6z(996)

Step 1: For all 0<r{n,

RH(r) &= v g 07 4-0... 740
2

Step 2 : For all 0<r{n,
RL(») < 1’_4_,07‘ _4__20 "’7’]0700
2 2
Step 3: For all 0<c<n,
CH(c) & 0cg-0cy-0 - 0cy

2
Step 4 : For all 0<c¢{n,

CL(c) & 06,2,‘10%2!_2 -0c,0cy

Step 5: For all 0<7, c{n, SRM(r,c) =
(RH(») + CH(0))x2% + (RL(#) + CL(¢&})
First, the #° processors are grouped into n
APPBs of n consecutive processors. The processors
in each APPB r, 0<#»{n, cooperate to compute
RI(r). The first d/2 processors, PE(r, ¢), 0<c<
d/2, in each APPB r use a bit operation to take
out the bit, »r4..,, from their r, compute

Fa-e-1X297% L and store it into their local
variable W7, ¢). RH(r) is actually the sum of
Wr, o 's, for all 0<c(d/2. Since each RH(7),
0<r(n, is less than n, we can use Observation 5

to add up Wr, ¢)'s in constant time. RH(7») is

then broadcasted to all the processors in APPB r.

RL(7) is computed similarly.

In steps 3 and 4, we use one APPB which con-
sists of a2 processors. For each 0<e{#, CH(c
and CL(c) can be computed using RH{(c¢) and
RL(c). Note that CH(c¢) is a half of RH(¢), and
CL(¢) is a half of RL(c). Thus, during the next
two bus cycles, each P; (= PE(r, ¢)) sends its
RH(7) and RL(») to P, (= PE() such that
k=cxn+7r. It is a one-to-one communication and
can be done in coﬁstant number of steps (by
Observation 2). Each P; (= PE(r, ¢)) now has four
values, RH(r), RL(»), CH(c), and CL(c). Using
these values, P; computes its SRM index, SRM(r, c).

Phase 2.
In this phase, the pixels are sorted in increasing
order of their SRM indices. It can be easily done by

having each P; send its pixel t0 Pgruy. Since the
SRM indices are all different and their range is
between 0 and #%, this routing can be done in
constant number of steps (Observation 2).

Phase 3.

Each P; next computes the number of trailing black
pixels of the run where its pixel belongs. Consider
the image in Figure 4. The number of trailing black
pixels that will be computed by P;, TailSize(i), is
defined as follows :

(Table 1> The number of trailing pixels of a black run

P ||.|32/33|34)35)36|37|38|30] 40]41 [42) 43| 44] 25| 4647 |...
SRM ||..|32]33)34|35]36|37|38| 0|40 {41 | 42|43 |44 |45| a6]47| .
Color O (] 0 OJ
Tail- '

dal l-lo|2[1]o|8|7[6|5|a[3|2|1]0]|2[1{0]-

The purpose of computing TailSize(i)'s is to use
them in phases 4-6 to find the maximal black
blocks. Phase 3 is divided into 4 steps. In step 1,

‘each processor checks if its pixel represents the first

black pixel of the run. This can be done by having
P;_, send the color of its pixel to P; through the
bus (i.e, the shift right operation). It is a one-to-
one data routing. In step 2, the bus is reconfigured
so that only those processors whose pixels belong to
the same black run form an APPB. In step 3, in -
order to compute the number of trailing black pixels
in the same run, all the processor with a black pixel
set their flag to 1. The prefix sums of these binary
values are then computed within each APPB
(Observation 4). In step 4, the computed prefix sum
of the end processor (ie. total number of pixels in
the run) of each APPB is broadcasted to all the
processors of the corresponding APPB. The number
of trailing black pixels in each PE is obtained from
the broadcasted sum and its own prefix sum.

Phase 4.

As in Table 1, the pixels are currently stored in
increasing order of their SRM indices. In this phase,
each P; computes the size of the maximal black
block its SRM index can represent. Let MaxBlk1(s)
be the size of the maximal block SRM s represents.
MaxBlkl(s) is equal to 4’, where j is the number
of trailing zeros of s in base 4. For example, 32 can
be written as 200,. Since the number of trailing
zeros is 2, MaxBlk1(32) = 4%=16.

As in the case of computing the SRM indices in
phase 1, we divide =’ processors into n APPBs of
n consecutive processors. We use a similar method
which was used for computing #° SRM indices.
Since the SRM index in P; is actually i, it can be
said that the objective of each P; is to compute the
number of trailing zeros of its own index i. Each
APPB r, 0<r{#, is used to compute the number of
trailing zeros of integer r, Z(#), when r is rep-
resented in base 4. We will show later how to
compute 2Z(7) in constant time. Here, we assume
that for each », 0<7<{#, Z(#) has already been
computed and stored in PE(r, 0).

In order for each P; to compute the number of
trailing zeros of integer i{, P; needs to collect two
values : Z(») and Z(c), where »=1{ div #n and
c=1i mod n. Note that Z(s) is equal to Z(c) if
c*0, Z(c)+Z(»), otherwise. Since the processors
that currently have Z(») and Z(c) are P;ava (=
PE(r, 0)) and P,mu» (= PE(c, 0)), respectively, these
two values can be picked up by P; using two bus
cycles.

For the sake of completeness, we show how to
compute the number of trailing zeros in integer r,
0<#»{(n, using APPB r. First, PE(r, c¢), 0<»<{2 and
0<c{d—1, takes out the c-th least significant bit
from r (ie, bit 7). If it is 0, then it sets a local
variable W, ¢) to be 1, 0 otherwise. The prefix
sums of Wr, ¢ are then computed inside APPB r.
PE(r, c) has the leading bit of the trailing zeros of r
if Do Wr, 9=c+1=2Wr, ©. This con-

LAROBMOHA OIZB &I AMZIEZ] ALOI] EEXQI W& 1517

dition is met only when bit c+1 is the first least
significant bit 1. This condition can be easily
checked using one shift left operation. If PE(r, ¢)
has the leading bit 0, then [cdiv2] is the number
of trailing zeros of r in base 4.

Phase 5.

The objective of each P;, 0<i{»m, is to compute
the size of the maximal black block it actually
represents with the current run. In order to do so,
each P; with a black pixel first computes the
number which is the largest power of four and is
less than or equal to TailSize(i). Let MaxBIk2(i} be
this number. This number indicates that P; cannot
represent a quadtree block of size larger than
MaxBlk2(i), if there are only TailSize(i) number of
pixels following it. For instance, if there are only 12
pixels including its pixel, P; cannot represent a
quadtree ‘block of size larger than 4. The size of the
maximal quadtree block which is represented by P;
can be computed using Maxblk1(i), MaxBIk2(i). It is
RealBIk(i) = min{Maxblk1(;), MaxBIk2(i)}.

The computation of MaxBIk2(;) is very similar to
that for MaxBIk1(i). The only difference is that
APPB r is used to locate the bit position of the
leading 1 of integer r, instead of computing the
number of trailing zeros of r. Let x be the bit

position of the leading 1 of i{. Then, Maxblk2(i) =
4152

Phase 6.

The objective of this phase is to discard the black
blocks that are not maximal. In order to do so,
each P; which represents a black block partici-
pates in the pr(;c%s of eliminating its quadrant
blocks. Suppose that P; represents a black block
of size x. Let y=ux/4. The processors that
represent the quadrant black block of P; are:
P;, Piyy, Piryy, Pii3y. So, P; notifies its block
size x to these 3 processors (excluding itself). The

1518 SnFENEIRE =X Mo H6=(996)

processors which get to know that their blocks are
included into a larger block mark themselves as "to
be deleted"”.

Phase 7.

Each P;, which represents a maximal black block,
generates its locational code (i, RealBlk(i)). In order
to pack the locational codes to the lowest numbered
processors, each processor with a locational code
sets its flag to 1. The prefix sums of these values
are next computed. The prefix sum, 24~ flag, in
P; becomes the index of the destination processor.
Finally, the locational codes are moved to their
destination processors during the next bus cycle.

Theorem 1.

The above dlgorithm transforms an nxn binary
image to the corresponding linear quadtree in
(1) time using n»* processors on the LAROB.

4, From a quadiree to binary image

Here, we present the converse algorithm. The /O
configuration of the algorithm is the reverse of that
in section 3. The image reconstruction algorithm can
be briefly described as follows. It consists of 3
phases. The detailed description follows.

Algorithm QuadtreeTolmage
1. Move each locational code (S, L) to processor
Ps.
2. Generate the pixels, and store them into the
processors in increasing order of their SRM
3. Sort the pixels in increasing order of their
linear indices.

Phase 1.
The input locational codes are initially stored in the

lowest numbered processors of the LAROB. These
codes are unpacked so that code (S, L) is moved to
processor Pgs. This data movement can be done in
&(1) time, since it is a one-to-one routing and the
source processors know the address of the des-
tination processors.

Phase 2.

What has to be done in this phase is to generate
4" black pixels from each locational code (S, L)
and store them in processors Ps, Psiy, Ps+o,
s, Pg,qt_;. In order to do so, each processor with
a locational code becomes the leader of an APPB.
Next, each leader processor broadcasts its (S, L) to
the rest of the processors in the same APPB.
Processor P;, 0<i{#°, generates a black pixel if
i<S+4%. The processors that did not generate a
black pixel in this phase set the color of their pixel
to be white.

Phase 3.

The pixels of the image are currently stored in
increasing order of their SRM indices. They are
unshuffied in this phase. First, each processor P;,
0<i<n®, computes SRM(i) (same as Phase 1 of the
quadtree building algorithm). P; then sends its tuple
(i, SRM(i)) to processor Pspmy. In order to unshuffle
the pixels, each processor Pgpg, uses the first inte~
ger in the received tuple as the address of the des-
tination processor of its pixel. The output binary image
gets reconstructed through the pixel unshuffling step.

Theorem 2.

The above dlgorithm transforms a linear quadtree to
the corresponding nxn binary image in 6(1) time
using n’® processors on the LAROB.

5. Conclusions

We have presented algorithms for transforming

between a binary image and a linear quadtree on
the LAROB. By fully utilizing the power of the
optical buses, these algorithms take &(1) time
using n® processors for images of size nxn.
These algorithms are optimal. Compared to the
previously known quadtree bulding algorithms on
other computing models, such as mesh, hypercube,
and reconfigurable mesh, our algorithms are simpler
and efficient. These algorithms show that there is a
good possibility that quadtree operations can be
efficiently implemented on the LAROB model.

References

[1] F. Dehne, A. G. Ferreira and A. Rau-Chaplin,
"Efficient Parallel Construction and Manipulation
of Quadtrees,” in Intemnational Conference on
Paralle! Processing, pp.255-262, 1991.

[2] 1. Gargantini, "An Effective Way to Represent
Quadtrees,” Communications of the ACM, Vol.25,
No.12, pp.905-910, 1982.

[3] Y. Hung and A. Rosenfeld, “Parallel Processing
of Linear Quadtrees on a Mesh-Connected Com-
puter,” Journal of Parallel and Distributed
Computing, Vol.7, pp.1-27, 1989.

(4] O. H. Ibarra and M. Kim, "Quadtree Building
Algorithms on an SIMD Hypercube,” Journal of
Farallel and Distributed Computing, Vol.18, pp.
71-76, 1993.

5] M. Kim and J. Jang, “Constant Time Trans-
formation Between Binary Images and Quadtrees
on a Reconfigurable Mesh,” Journal o KISS
(A) : Computer Systems and Theory, Vol.23,
No.5, pp.454-466, May 1996.

{6] K. Li, Y. Pan, and S.-Q. Zheng, Parullel Com-
puting Using Optical Interconnections, Kluwer
Academic Publishers, 1998.

[7]1 R. Miller, V. K. Prasanna Kumar, D. 1. Reisis
and Q. F. Stout, "Meshes with Reconfigurable

LARCBAIOIIA OIZH AT ARDIEZ] ALOIQ] ZRE&XQI H2t 1519

Buses,” Proc. 5th MIT Corference On Advanced
Research in VLSI, pp.163-178, 1988,

[8] S. Pavel and S. G. Akl, "On the Power of
Arrays with Reconfigurable Optical Buses,”
Proc Int'l Conf Parallel and Distributed Pro-
cessing Techniques and Applications, Vollll,
pp.1443-1454, Aug. 1996.

[9] S. Pavel and S. G. AKkl, "Integer Sorting and
Routing in Arrays with Reconfigurable Optical
Buses,” Proc. Int’l Conf on Parallel Processing,
Vol.2, pp.90-94, 1996.

[10] C. Qiao and R. G. Melhem, "Time-Division Op-
tical Communications in Multiprocessor Arrays,”
IEEE Trans. on Computers, Vol42, No5, pp.577-
590, May 1993.

[11] S. Rajasekaran and S. Sahni, “Sorting, Selection,
and Routing on the Array with Reconfigurable
Optical Buses,” IEEE Trans. on Parallel and
Distributed Systems, Vol.8, No.11, pp.1123-1132,
Nov. 1997.

[12] H Samet, "Region Representation : Quadtrees
from Binary Arrays,” Computer Graphics and
Image Processing, Vol.13, pp.88-93, 1980.

Pe H

e-mail : mkim@mmewha.ackr

1981 o|sioAdigtn S 8ah(%}
*h

19839 A &igta AlLHE A
(44

1990 olilAetdse FFedts
(441

19933 A xvol FYPujm(itetututal £A) AF
] &3 (A}

19939 ~1994d A Eop FHGu(Metstviet £
A) AFE Y} ZAL Postdoc

19959 ~ A ol tn FAFE}H zuy

B R - WA/EAN 43 E, FAIAAT BFY,

HEHA/Z2H 78 AFY

